Kyriakos Almpanidis, Theodora Kastritsi, Z. Doulgeri
{"title":"Finding the Optimal Incision Point in Robotic Assisted Surgery","authors":"Kyriakos Almpanidis, Theodora Kastritsi, Z. Doulgeri","doi":"10.1109/ICRA48891.2023.10160936","DOIUrl":null,"url":null,"abstract":"In robotic assisted surgeries, surgical tools are inserted into the human body via an incision point in the abdominal wall, which is imposed as a remote center of motion (RCM). The selection of the incision's point location in the human body is critical for the success of the surgical procedure. In this paper, we propose a simulation tool for finding the optimal incision point location, which can be utilized by the surgeon during the preoperative stage. The surgeon can plan the path/region of intervention as well as sensitive regions which should be protected from unintentional damage by the surgical tool on the preoperative images of internal organs. A target admittance model that enforces a candidate incision as a RCM is utilized in the simulation enhanced by a term for following the planned path. We propose a cost evaluation function taking into account metrics involving the distance of the tool from sensitive areas, the tool links maximum pressure on tumors and the robot's dexterity measure. The example of a tumor resection task is used with the simulation tool to demonstrate its use in finding the incision points that ensures minimal intraoperative risks and accurate task execution.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In robotic assisted surgeries, surgical tools are inserted into the human body via an incision point in the abdominal wall, which is imposed as a remote center of motion (RCM). The selection of the incision's point location in the human body is critical for the success of the surgical procedure. In this paper, we propose a simulation tool for finding the optimal incision point location, which can be utilized by the surgeon during the preoperative stage. The surgeon can plan the path/region of intervention as well as sensitive regions which should be protected from unintentional damage by the surgical tool on the preoperative images of internal organs. A target admittance model that enforces a candidate incision as a RCM is utilized in the simulation enhanced by a term for following the planned path. We propose a cost evaluation function taking into account metrics involving the distance of the tool from sensitive areas, the tool links maximum pressure on tumors and the robot's dexterity measure. The example of a tumor resection task is used with the simulation tool to demonstrate its use in finding the incision points that ensures minimal intraoperative risks and accurate task execution.