F. Zutavern, A. Baca, W. Chow, M. Hafich, H. Hjalmarson, G. Loubriel, A. Mar, M. O’Malley, G. A. Vawter
{"title":"Semiconductor e-h plasma lasers","authors":"F. Zutavern, A. Baca, W. Chow, M. Hafich, H. Hjalmarson, G. Loubriel, A. Mar, M. O’Malley, G. A. Vawter","doi":"10.1109/ISLC.2000.882279","DOIUrl":null,"url":null,"abstract":"High energy, electrically controlled, compact, short-pulse lasers are useful for active optical sensors. We present a new class of semiconductor laser that can potentially produce much more short pulse energy than conventional (injection-pumped) semiconductor lasers (CSL) because this new laser is not limited in volume or aspect ratio by the depth of a p-n junction. We have tested current filament semiconductor lasers (CFSL) that have produced 75nJ of 890nm radiation in 1.5ns (50W peak), approximately ten times more energy than ISL. These lasers are created from current filaments in semi-insulating GaAs and, in contrast to CSL, are not based on current injection. Instead, low-field avalanche carrier generation produces a high-density, charge-neutral plasma channel with the required carrier density distribution for lasing. This paper will report spectral narrowing, lasing thresholds, beam divergence, temporal narrowing, and energies which imply lasing for several configurations of CFSL. It will also discuss active volume scaling based on recent high current tests.","PeriodicalId":322366,"journal":{"name":"Conference Digest. 2000 IEEE 17th International Semiconductor Laser Conference. (Cat. No.00CH37092)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest. 2000 IEEE 17th International Semiconductor Laser Conference. (Cat. No.00CH37092)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLC.2000.882279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
High energy, electrically controlled, compact, short-pulse lasers are useful for active optical sensors. We present a new class of semiconductor laser that can potentially produce much more short pulse energy than conventional (injection-pumped) semiconductor lasers (CSL) because this new laser is not limited in volume or aspect ratio by the depth of a p-n junction. We have tested current filament semiconductor lasers (CFSL) that have produced 75nJ of 890nm radiation in 1.5ns (50W peak), approximately ten times more energy than ISL. These lasers are created from current filaments in semi-insulating GaAs and, in contrast to CSL, are not based on current injection. Instead, low-field avalanche carrier generation produces a high-density, charge-neutral plasma channel with the required carrier density distribution for lasing. This paper will report spectral narrowing, lasing thresholds, beam divergence, temporal narrowing, and energies which imply lasing for several configurations of CFSL. It will also discuss active volume scaling based on recent high current tests.