{"title":"Generalized integrated framework for modelling communications and electric power infrastructure resilience","authors":"A. Kwasinski, V. Krishnamurthy","doi":"10.1109/INTLEC.2017.8211686","DOIUrl":null,"url":null,"abstract":"This paper presents a quantitative framework for modeling electric power and communications infrastructures resilience. While in the past, resilience models applied to these infrastructures have focused on technological aspects, a fundamental novel aspect of the herein presented framework is the integral inclusion of models for human-driven processes, such as logistics, that influences recovery speed. Another fundamental novel aspect of the presented modeling framework is the generalized representation of dependencies and the characterization of the role that service buffers, such as energy storage, have on representing dependencies of associated services. Infrastructure system models combine three interconnected domains, each mathematically represented by at least one graph: a physical domain, a human/organizational domain, and a cyber domain. Each of the graphs that form the proposed framework represent the provision of a service. Thus, modeling of functional dependencies is inherently part of the developed models.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2017.8211686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a quantitative framework for modeling electric power and communications infrastructures resilience. While in the past, resilience models applied to these infrastructures have focused on technological aspects, a fundamental novel aspect of the herein presented framework is the integral inclusion of models for human-driven processes, such as logistics, that influences recovery speed. Another fundamental novel aspect of the presented modeling framework is the generalized representation of dependencies and the characterization of the role that service buffers, such as energy storage, have on representing dependencies of associated services. Infrastructure system models combine three interconnected domains, each mathematically represented by at least one graph: a physical domain, a human/organizational domain, and a cyber domain. Each of the graphs that form the proposed framework represent the provision of a service. Thus, modeling of functional dependencies is inherently part of the developed models.