Comparison of Cumulative Average to Unit Learning Curves: A Monte Carlo Approach

T. Miller, A. Dowling, David Youd, Eric J. Unger, E. White
{"title":"Comparison of Cumulative Average to Unit Learning Curves: A Monte Carlo Approach","authors":"T. Miller, A. Dowling, David Youd, Eric J. Unger, E. White","doi":"10.1080/1941658X.2012.682943","DOIUrl":null,"url":null,"abstract":"Cumulative average and unit cost learning curve methodologies dominate current learning curve theory. Both models mathematically estimate the structure of costs over time and under particular conditions. While cost estimators and industries have shown preferences for particular models, this article evaluates model performance under varying program characteristics. A Monte Carlo approach is used to perform analysis and identify the superior method for use under differing programmatic factors and conditions. Decision charts are provided to aide analysts' learning curve model selection for aircraft production and modification programs. Overall, the results indicate that the unit theory outperforms the cumulative average theory when more than 40 units exist to create a prediction learning curve or when the data presents high learning and low variation in the program; however, the cumulative average theory predicts unit costs with less error when few units to create the curve exists, low learning occurs, and high variation transpires. This article not subject to US copyright law.","PeriodicalId":390877,"journal":{"name":"Journal of Cost Analysis and Parametrics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cost Analysis and Parametrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1941658X.2012.682943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cumulative average and unit cost learning curve methodologies dominate current learning curve theory. Both models mathematically estimate the structure of costs over time and under particular conditions. While cost estimators and industries have shown preferences for particular models, this article evaluates model performance under varying program characteristics. A Monte Carlo approach is used to perform analysis and identify the superior method for use under differing programmatic factors and conditions. Decision charts are provided to aide analysts' learning curve model selection for aircraft production and modification programs. Overall, the results indicate that the unit theory outperforms the cumulative average theory when more than 40 units exist to create a prediction learning curve or when the data presents high learning and low variation in the program; however, the cumulative average theory predicts unit costs with less error when few units to create the curve exists, low learning occurs, and high variation transpires. This article not subject to US copyright law.
累积平均与单位学习曲线的比较:蒙特卡罗方法
累积平均和单位成本学习曲线方法主导了当前的学习曲线理论。这两种模型都用数学方法估算了特定条件下随时间变化的成本结构。虽然成本估算者和行业已经显示出对特定模型的偏好,但本文在不同的程序特征下评估模型的性能。蒙特卡罗方法用于执行分析和确定在不同的规划因素和条件下使用的最佳方法。决策图可以帮助分析人员选择飞机生产和改装项目的学习曲线模型。总体而言,结果表明,当超过40个单元存在以创建预测学习曲线或当数据在程序中呈现高学习和低变化时,单元理论优于累积平均理论;然而,累积平均理论预测的单位成本误差较小,当创建曲线的单位较少,学习较少,变化较大时。本文不受美国版权法的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信