Khirakorn Thipprachak, P. Tangamchit, S. Lerspalungsanti
{"title":"A Convolutional Neural Network Model for Privacy-Sensitive Ultra-Wideband Radar-Based Human Static Posture Classification and Fall Detection","authors":"Khirakorn Thipprachak, P. Tangamchit, S. Lerspalungsanti","doi":"10.1109/SSP53291.2023.10208028","DOIUrl":null,"url":null,"abstract":"A reliable fall detection system can enhance the safety of senior citizens by detecting falls in private areas, such as restrooms, where accidents may go unnoticed. This study aimed to create a static human posture recognition system with a possibility of extension for detecting falls in private areas. The system used ultra-wideband (UWB) sensors to detect human body gestures and analyze an individual's posture to determine a laydown posture, which is abnormal in restroom usage. UWB is capable of protecting human privacy because its output contains limited information. This study implemented a convolutional neural network (CNN) model that classified signals from an ultra-wideband sensor in a bathroom into four categories: standing, sitting, lying down, and nobody. This paper proposes a CNN classifier with an overall accuracy of 93%. These results demonstrate the capability of the proposed system to recognize static human posture in private locations.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A reliable fall detection system can enhance the safety of senior citizens by detecting falls in private areas, such as restrooms, where accidents may go unnoticed. This study aimed to create a static human posture recognition system with a possibility of extension for detecting falls in private areas. The system used ultra-wideband (UWB) sensors to detect human body gestures and analyze an individual's posture to determine a laydown posture, which is abnormal in restroom usage. UWB is capable of protecting human privacy because its output contains limited information. This study implemented a convolutional neural network (CNN) model that classified signals from an ultra-wideband sensor in a bathroom into four categories: standing, sitting, lying down, and nobody. This paper proposes a CNN classifier with an overall accuracy of 93%. These results demonstrate the capability of the proposed system to recognize static human posture in private locations.