{"title":"Towards Low Latency in 5G HetNets: A Bayesian Cell Selection / User Association Approach","authors":"Mohamed Elkourdi, Asim Mazin, R. Gitlin","doi":"10.1109/5GWF.2018.8517073","DOIUrl":null,"url":null,"abstract":"Expanding the cellular ecosystem to support an immense number of connected devices and creating a platform that accommodates a wide range of emerging services of different traffic types and Quality of Service (QoS) metrics are among the 5G’s headline features. One of the key 5G performance metrics is ultra-low latency to enable new delay-sensitive use cases. Some network architectural amendments are proposed to achieve the 5G ultra-low latency objective. With these paradigm shifts in system architecture, it is of cardinal importance to rethink the cell selection / user association process to achieve substantial improvement in system performance over conventional maximum signal-to- interference plus noise ratio (Max-SINR) and cell range expansion (CRE) algorithms employed in Long Term Evolution-Advanced (LTE-Advanced). In this paper, a novel Bayesian cell selection / user association algorithm, incorporating the access nodes capabilities and the user equipment (UE) traffic type, is proposed in order to maximize the probability of proper association and consequently enhance the system performance in terms of achieved latency. Simulation results show that Bayesian game approach attains the 5G low end-to-end latency target with a probability exceeding 80%.","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8517073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Expanding the cellular ecosystem to support an immense number of connected devices and creating a platform that accommodates a wide range of emerging services of different traffic types and Quality of Service (QoS) metrics are among the 5G’s headline features. One of the key 5G performance metrics is ultra-low latency to enable new delay-sensitive use cases. Some network architectural amendments are proposed to achieve the 5G ultra-low latency objective. With these paradigm shifts in system architecture, it is of cardinal importance to rethink the cell selection / user association process to achieve substantial improvement in system performance over conventional maximum signal-to- interference plus noise ratio (Max-SINR) and cell range expansion (CRE) algorithms employed in Long Term Evolution-Advanced (LTE-Advanced). In this paper, a novel Bayesian cell selection / user association algorithm, incorporating the access nodes capabilities and the user equipment (UE) traffic type, is proposed in order to maximize the probability of proper association and consequently enhance the system performance in terms of achieved latency. Simulation results show that Bayesian game approach attains the 5G low end-to-end latency target with a probability exceeding 80%.