Developing an efficient spectral clustering algorithm on large scale graphs in spark

A. Taloba, Marwan R. Riad, T. H. Soliman
{"title":"Developing an efficient spectral clustering algorithm on large scale graphs in spark","authors":"A. Taloba, Marwan R. Riad, T. H. Soliman","doi":"10.1109/INTELCIS.2017.8260077","DOIUrl":null,"url":null,"abstract":"Recently, most of the data can be represented by graph structures, such as social media, Protein-Protein Interaction, transportation system, systems biology,…, etc. Many researches have been achieved to cluster very large graphs but more efficient algorithms are required since such a process takes a long time and requires more memory. In this paper, we propose an Efficient Spectral Clustering Algorithm on Large Scale Graphs in Spark (ESCALG), using map reduce function and shuffling phases in Dijkstra's algorithm. In addition, ESCALG depends mainly on a sparse matrix as a data structure, which less time in execution. Then, GraphX is applied to deal with graph data processing and in GraphX used Pregel in computing shortest path. To test the performance of ESCALG, it is compared with Large-Scale Spectral Clustering on Graphs and Standard Spectral Clustering Algorithms using seven datasets, where ESCALG proved high efciency in terms of memory and time performance.","PeriodicalId":321315,"journal":{"name":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2017.8260077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Recently, most of the data can be represented by graph structures, such as social media, Protein-Protein Interaction, transportation system, systems biology,…, etc. Many researches have been achieved to cluster very large graphs but more efficient algorithms are required since such a process takes a long time and requires more memory. In this paper, we propose an Efficient Spectral Clustering Algorithm on Large Scale Graphs in Spark (ESCALG), using map reduce function and shuffling phases in Dijkstra's algorithm. In addition, ESCALG depends mainly on a sparse matrix as a data structure, which less time in execution. Then, GraphX is applied to deal with graph data processing and in GraphX used Pregel in computing shortest path. To test the performance of ESCALG, it is compared with Large-Scale Spectral Clustering on Graphs and Standard Spectral Clustering Algorithms using seven datasets, where ESCALG proved high efciency in terms of memory and time performance.
在spark中开发一种高效的大规模图谱聚类算法
最近,大多数数据都可以用图结构来表示,如社交媒体、蛋白质-蛋白质相互作用、运输系统、系统生物学等。对于非常大的图的聚类已经有了很多研究,但由于聚类过程耗时长,并且需要更多的内存,因此需要更高效的算法。本文利用Dijkstra算法中的映射约简函数和洗牌阶段,提出了一种基于Spark的大规模图的高效谱聚类算法(ESCALG)。此外,ESCALG主要依赖于稀疏矩阵作为数据结构,减少了执行时间。然后,应用GraphX进行图形数据处理,并在GraphX中使用Pregel进行最短路径计算。为了测试ESCALG算法的性能,在7个数据集上与大规模谱聚类算法和标准谱聚类算法进行了比较,结果表明ESCALG算法在内存性能和时间性能方面具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信