A novel statistical approach for chaos detection in Chua's circuit

T. Maayah, M. Khasawneh, L. Khadra
{"title":"A novel statistical approach for chaos detection in Chua's circuit","authors":"T. Maayah, M. Khasawneh, L. Khadra","doi":"10.1109/ICECS.1996.584485","DOIUrl":null,"url":null,"abstract":"A statistical approach for chaos identification in a time series is described and applied to numerical data generated from Chua's circuit. This method compares the short-term predictability for a given time series to an ensemble of random data which has the same Fourier spectrum as the original time series. The forecasting error is computed as a statistic for performing statistical hypothesis testing. The forcasting technique is modified by introducing a moving predictor. The results show that this will give more accurate predictions, hence, better capability of distinguishing chaos from random noise in time series.","PeriodicalId":402369,"journal":{"name":"Proceedings of Third International Conference on Electronics, Circuits, and Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Electronics, Circuits, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.1996.584485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A statistical approach for chaos identification in a time series is described and applied to numerical data generated from Chua's circuit. This method compares the short-term predictability for a given time series to an ensemble of random data which has the same Fourier spectrum as the original time series. The forecasting error is computed as a statistic for performing statistical hypothesis testing. The forcasting technique is modified by introducing a moving predictor. The results show that this will give more accurate predictions, hence, better capability of distinguishing chaos from random noise in time series.
蔡氏电路混沌检测的一种新的统计方法
描述了一种时间序列混沌识别的统计方法,并将其应用于蔡氏电路产生的数值数据。该方法将给定时间序列的短期可预测性与具有与原始时间序列相同傅立叶谱的随机数据集合进行比较。预测误差作为统计量计算,用于统计假设检验。通过引入移动预测器对预测技术进行了改进。结果表明,该方法可以给出更准确的预测,从而更好地区分时间序列中的混沌和随机噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信