{"title":"Reducing Disk I/O Performance Sensitivity for Large Numbers of Sequential Streams","authors":"George Panagiotakis, Michail Flouris, A. Bilas","doi":"10.1109/ICDCS.2009.31","DOIUrl":null,"url":null,"abstract":"Retrieving sequential rich media content from modern commodity disks is a challenging task. As disk capacity increases, there is a need to increase the number of streams that are allocated to each disk. However, when multiple streams are accessing a single disk, throughput is dramatically reduced because of disk head seek overhead, resulting in requirements for more disks. Thus, there is a tradeoff between how many streams should be allowed to access a disk and the total throughput that can be achieved. In this work we examine this tradeoff and provide an understanding of issues along with a practical solution. We use Disksim, a detailed architectural simulator, to examine several aspects of a modern I/O subsystem and we show the effect of various disk parameters on system performance under multiple sequential streams. Then, we propose a solution that dynamically adjusts I/O request streams, based on host and I/O subsystem parameters. We implement our approach in a real system and perform experiments with a small and a large disk configuration. Our approach improves disk throughput up to a factor of 4 with a workload of 100 sequential streams, without requiring large amounts of memory on the storage node. Moreover, it is able to adjust (statically) to different storage node configurations, essentially making the I/O subsystem insensitive to the number of I/O streams used.","PeriodicalId":387968,"journal":{"name":"2009 29th IEEE International Conference on Distributed Computing Systems","volume":"21 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 29th IEEE International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2009.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Retrieving sequential rich media content from modern commodity disks is a challenging task. As disk capacity increases, there is a need to increase the number of streams that are allocated to each disk. However, when multiple streams are accessing a single disk, throughput is dramatically reduced because of disk head seek overhead, resulting in requirements for more disks. Thus, there is a tradeoff between how many streams should be allowed to access a disk and the total throughput that can be achieved. In this work we examine this tradeoff and provide an understanding of issues along with a practical solution. We use Disksim, a detailed architectural simulator, to examine several aspects of a modern I/O subsystem and we show the effect of various disk parameters on system performance under multiple sequential streams. Then, we propose a solution that dynamically adjusts I/O request streams, based on host and I/O subsystem parameters. We implement our approach in a real system and perform experiments with a small and a large disk configuration. Our approach improves disk throughput up to a factor of 4 with a workload of 100 sequential streams, without requiring large amounts of memory on the storage node. Moreover, it is able to adjust (statically) to different storage node configurations, essentially making the I/O subsystem insensitive to the number of I/O streams used.