Detect, Fix, and Verify TensorFlow API Misuses

Wilson Baker, Michael O'Connor, Seyed Reza Shahamiri, Valerio Terragni
{"title":"Detect, Fix, and Verify TensorFlow API Misuses","authors":"Wilson Baker, Michael O'Connor, Seyed Reza Shahamiri, Valerio Terragni","doi":"10.1109/saner53432.2022.00110","DOIUrl":null,"url":null,"abstract":"The growing application of DL makes detecting and fixing defective DL programs of paramount importance. Recent studies on DL defects report that TensorFlow API misuses represent a common class of DL defects. However to effectively detect, fix, and verify them remains an understudied problem. This paper presents the TensorFlow API misuses Detector And Fixer (TADAF) technique, which relies on 11 common API misuses patterns and corresponding fixes that we extracted from StackOverftow. TADAF statically analyses a TensorFlow program for identifying matches of any of the 11 patterns. If it finds a match, it automatically generates a fixed version of the program. To verify that the misuse brings a tangible negative effect, TADAF reports functional, accuracy, or efficiency differences when training and testing (with the same data) the original and fixed versions of the program. Our preliminary evaluation on five GitHub projects shows that TADAF detected and fixed all the API misuses.","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The growing application of DL makes detecting and fixing defective DL programs of paramount importance. Recent studies on DL defects report that TensorFlow API misuses represent a common class of DL defects. However to effectively detect, fix, and verify them remains an understudied problem. This paper presents the TensorFlow API misuses Detector And Fixer (TADAF) technique, which relies on 11 common API misuses patterns and corresponding fixes that we extracted from StackOverftow. TADAF statically analyses a TensorFlow program for identifying matches of any of the 11 patterns. If it finds a match, it automatically generates a fixed version of the program. To verify that the misuse brings a tangible negative effect, TADAF reports functional, accuracy, or efficiency differences when training and testing (with the same data) the original and fixed versions of the program. Our preliminary evaluation on five GitHub projects shows that TADAF detected and fixed all the API misuses.
检测,修复和验证TensorFlow API误用
随着深度学习的应用越来越广泛,检测和修复有缺陷的深度学习程序变得至关重要。最近关于深度学习缺陷的研究报告称,对TensorFlow API的误用代表了一类常见的深度学习缺陷。然而,如何有效地检测、修复和验证它们仍然是一个有待研究的问题。本文介绍了TensorFlow API误用检测器和修复器(TADAF)技术,该技术依赖于我们从StackOverftow中提取的11种常见API误用模式和相应的修复。TADAF静态地分析TensorFlow程序,以识别11种模式中的任何一种的匹配。如果找到匹配项,它就自动生成程序的固定版本。为了验证误用带来了切实的负面影响,TADAF报告了在训练和测试程序的原始版本和固定版本(使用相同的数据)时的功能、准确性或效率差异。我们对五个GitHub项目的初步评估表明,TADAF检测并修复了所有API的滥用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信