Real-Time Hand Pose Estimation from RGB-D Sensor

Y. Yao, Y. Fu
{"title":"Real-Time Hand Pose Estimation from RGB-D Sensor","authors":"Y. Yao, Y. Fu","doi":"10.1109/ICME.2012.48","DOIUrl":null,"url":null,"abstract":"Hand pose estimation in cluttered environment is always challenging. In this paper, we address the problem of hand pose estimation from RGB-D sensor. To achieve robust real-time usability, we first design a data acquisition strategy, using a color glove to label different hand parts, and collect a new training data set. Then a novel hand pose estimation framework is presented, so that feature fusion drives hand localization and hand parts classification. Moreover, instead of using articulated model, a simplified and efficient 3D contour model is designed to assist real-time implementation, which does not require a large amount of training data. Experiments show that our approach can handle real-time hand interaction in a desktop environments with cluttered background.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Hand pose estimation in cluttered environment is always challenging. In this paper, we address the problem of hand pose estimation from RGB-D sensor. To achieve robust real-time usability, we first design a data acquisition strategy, using a color glove to label different hand parts, and collect a new training data set. Then a novel hand pose estimation framework is presented, so that feature fusion drives hand localization and hand parts classification. Moreover, instead of using articulated model, a simplified and efficient 3D contour model is designed to assist real-time implementation, which does not require a large amount of training data. Experiments show that our approach can handle real-time hand interaction in a desktop environments with cluttered background.
基于RGB-D传感器的实时手部姿态估计
复杂环境下的手部姿态估计一直是一个挑战。本文研究了基于RGB-D传感器的手部姿态估计问题。为了实现鲁棒的实时可用性,我们首先设计了一种数据采集策略,使用彩色手套标记不同的手部部位,并收集新的训练数据集。然后提出了一种新的手部姿态估计框架,利用特征融合驱动手部定位和手部部位分类。此外,在不需要大量训练数据的情况下,设计了一种简化、高效的三维轮廓模型来辅助实时实现,而不是使用铰接模型。实验表明,我们的方法可以处理背景杂乱的桌面环境下的实时手交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信