Optimizing the Performance of Fog Computing Environments Using AI and Co-Simulation

Shreshth Tuli, G. Casale
{"title":"Optimizing the Performance of Fog Computing Environments Using AI and Co-Simulation","authors":"Shreshth Tuli, G. Casale","doi":"10.1145/3491204.3527490","DOIUrl":null,"url":null,"abstract":"This tutorial presents a performance engineering approach for optimizing the Quality of Service (QoS) of Edge/Fog/Cloud Computing environments using AI and Coupled-Simulation being developed as part of the Co-Simulation based Container Orchestration (COSCO) framework. It introduces fundamental AI and co-simulation concepts, their importance in QoS optimization and performance engineering challenges in the context of Fog computing. It also discusses how AI models, specifically, deep neural networks (DNNs), can be used in tandem with simulated estimates to take optimal resource management decisions. Additionally, we discuss a few use cases of training DNNs as surrogates to estimate key QoS metrics and utilize such models to build policies for dynamic scheduling in a distributed fog environment. The tutorial demonstrates these concepts using the COSCO framework. Metric monitoring and simulation primitives in COSCO demonstrates the efficacy of an AI and simulation based scheduler on a fog/cloud platform. Finally, we provide AI baselines for resource management problems that arise in the area of fog management.","PeriodicalId":129216,"journal":{"name":"Companion of the 2022 ACM/SPEC International Conference on Performance Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2022 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491204.3527490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This tutorial presents a performance engineering approach for optimizing the Quality of Service (QoS) of Edge/Fog/Cloud Computing environments using AI and Coupled-Simulation being developed as part of the Co-Simulation based Container Orchestration (COSCO) framework. It introduces fundamental AI and co-simulation concepts, their importance in QoS optimization and performance engineering challenges in the context of Fog computing. It also discusses how AI models, specifically, deep neural networks (DNNs), can be used in tandem with simulated estimates to take optimal resource management decisions. Additionally, we discuss a few use cases of training DNNs as surrogates to estimate key QoS metrics and utilize such models to build policies for dynamic scheduling in a distributed fog environment. The tutorial demonstrates these concepts using the COSCO framework. Metric monitoring and simulation primitives in COSCO demonstrates the efficacy of an AI and simulation based scheduler on a fog/cloud platform. Finally, we provide AI baselines for resource management problems that arise in the area of fog management.
利用人工智能和联合仿真优化雾计算环境的性能
本教程介绍了一种性能工程方法,用于使用AI和耦合仿真来优化边缘/雾/云计算环境的服务质量(QoS),这是基于协同仿真的容器编排(COSCO)框架的一部分。它介绍了基本的人工智能和联合仿真概念,它们在雾计算背景下的QoS优化和性能工程挑战中的重要性。它还讨论了人工智能模型,特别是深度神经网络(dnn),如何与模拟估计一起使用,以做出最佳的资源管理决策。此外,我们讨论了一些训练dnn作为替代品的用例,以估计关键的QoS指标,并利用这些模型在分布式雾环境中构建动态调度策略。本教程使用COSCO框架演示这些概念。中远集团的度量监控和仿真原语在雾/云平台上展示了基于人工智能和仿真的调度程序的有效性。最后,我们为雾管理领域出现的资源管理问题提供了人工智能基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信