Hardware annealing on DT-CNN using CAM2

T. Fujita, K. Sakomizu, T. Ogura
{"title":"Hardware annealing on DT-CNN using CAM2","authors":"T. Fujita, K. Sakomizu, T. Ogura","doi":"10.1109/CNNA.2010.5430328","DOIUrl":null,"url":null,"abstract":"This is a feasibility study of the implementation of discrete time cellular neural network (DT-CNN) annealing on Cellular AutoMata on Content Addressable Memory (CAM2). CAM2 is a dedicated hardware for cellular automata (CA) and DT-CNN. We propose an annealing method on DT-CNN to solve quadratic assignment problems. This method uses the noise generated by chaotic behavior of class 3 CA. Since CA can be implemented on CAM2 easily, our proposed method is suitable for hardware implementation. In this paper we evaluate the performance of the hardware annealing. Our experimental results show the network with the CA noise tends to one particular solution under some condition. We also evaluate how the hardware restrictions of CAM2 affect on the annealing performance. In spite of the hardware restrictions, our experimental results show the hardware annealing can be performed on the existent implementation of the CAM2.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This is a feasibility study of the implementation of discrete time cellular neural network (DT-CNN) annealing on Cellular AutoMata on Content Addressable Memory (CAM2). CAM2 is a dedicated hardware for cellular automata (CA) and DT-CNN. We propose an annealing method on DT-CNN to solve quadratic assignment problems. This method uses the noise generated by chaotic behavior of class 3 CA. Since CA can be implemented on CAM2 easily, our proposed method is suitable for hardware implementation. In this paper we evaluate the performance of the hardware annealing. Our experimental results show the network with the CA noise tends to one particular solution under some condition. We also evaluate how the hardware restrictions of CAM2 affect on the annealing performance. In spite of the hardware restrictions, our experimental results show the hardware annealing can be performed on the existent implementation of the CAM2.
利用CAM2对DT-CNN进行硬件退火
本文研究了离散时间元胞神经网络(DT-CNN)退火在内容可寻址存储器(CAM2)元胞自动机上实现的可行性。CAM2是元胞自动机(CA)和DT-CNN的专用硬件。提出了一种求解二次分配问题的DT-CNN退火方法。该方法利用了3类CA混沌行为产生的噪声。由于CA可以很容易地在CAM2上实现,因此我们提出的方法适合硬件实现。本文对硬件退火的性能进行了评价。实验结果表明,在一定条件下,含有CA噪声的网络趋向于一个特解。我们还评估了CAM2的硬件限制对退火性能的影响。尽管存在硬件限制,但我们的实验结果表明,硬件退火可以在现有的CAM2实现上进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信