{"title":"Global stabilization of anti-windup PID position control for euler-lagrange systems with actuator saturation","authors":"M. Kanamori","doi":"10.1109/CASE.2011.6042402","DOIUrl":null,"url":null,"abstract":"Using an output saturation function of the error vector (difference between the target vector and the revolution angle vector), globally asymptotic stability of any equilibrium state can be achieved for an anti-windup PID position control of Euler-Lagrange systems with actuator saturation. The control performance is verified by numerical simulations and experiments on a two-link robot arm.","PeriodicalId":236208,"journal":{"name":"2011 IEEE International Conference on Automation Science and Engineering","volume":"55 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2011.6042402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Using an output saturation function of the error vector (difference between the target vector and the revolution angle vector), globally asymptotic stability of any equilibrium state can be achieved for an anti-windup PID position control of Euler-Lagrange systems with actuator saturation. The control performance is verified by numerical simulations and experiments on a two-link robot arm.