Neural network and principal component analyses of highly variable myocardial mechanical waveforms derived from echocardiographic ultrasound images

McMahon Em, J. Korinek, Honghai Zhang, M. Sonka, A. Manduca, M. Belohlavek
{"title":"Neural network and principal component analyses of highly variable myocardial mechanical waveforms derived from echocardiographic ultrasound images","authors":"McMahon Em, J. Korinek, Honghai Zhang, M. Sonka, A. Manduca, M. Belohlavek","doi":"10.1109/IJCNN.2005.1556406","DOIUrl":null,"url":null,"abstract":"We introduce a new type of data for classification of regional segments of myocardium. We have analyzed strain measurements taken throughout the cardiac cycle from the echocardiograms of pigs. Classifications by both principal component analysis (PCA) and by neural network (NN) are combined for a data mining operation. Differences in strain waveforms between normal and diseased myocardium may further elucidate the corresponding changes in physiology. Altered functioning of the heart muscle is reflected by strain, and objective computer analysis should aid in the diagnosis of ischemia. We hypothesize that the entire strain waveform over one heart cycle can be classified to functionally determine whether or not a myocardial region is perfused.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a new type of data for classification of regional segments of myocardium. We have analyzed strain measurements taken throughout the cardiac cycle from the echocardiograms of pigs. Classifications by both principal component analysis (PCA) and by neural network (NN) are combined for a data mining operation. Differences in strain waveforms between normal and diseased myocardium may further elucidate the corresponding changes in physiology. Altered functioning of the heart muscle is reflected by strain, and objective computer analysis should aid in the diagnosis of ischemia. We hypothesize that the entire strain waveform over one heart cycle can be classified to functionally determine whether or not a myocardial region is perfused.
由超声心动图超声图像衍生的高度可变心肌机械波形的神经网络和主成分分析
我们介绍了一种用于心肌区域节段分类的新型数据。我们分析了猪的超声心动图在整个心脏周期中采取的应变测量。将主成分分析(PCA)和神经网络(NN)相结合进行数据挖掘操作。正常和病变心肌应变波形的差异可能进一步阐明相应的生理变化。心肌功能的改变可以通过劳损反映出来,客观的计算机分析有助于缺血的诊断。我们假设,整个应变波形在一个心脏周期可以分类,以功能确定是否心肌区域被灌注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信