Forecasting of Air Passengers using Singular Spectrum Analysis

Sisti Nadia Amalia, Zul Amry
{"title":"Forecasting of Air Passengers using Singular Spectrum Analysis","authors":"Sisti Nadia Amalia, Zul Amry","doi":"10.54647/mathematics110393","DOIUrl":null,"url":null,"abstract":"Air transportation is the most appropriate option for extremely vast distances, such as those between cities, provinces, and countries. While unpredictability, high volatility, and seasonality sometimes result in complex behavior in air passenger time series, this research applies the Singular Spectrum Analysis technique for air passengers data and uses the linear recurrent type for forecasting. Trends, seasonality, cyclists, and noise can all be found and extracted using Singular Spectrum Analysis. Singular Spectrum Analysis has the potential to be a highly effective forecasting method.","PeriodicalId":380124,"journal":{"name":"SCIREA Journal of Mathematics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCIREA Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54647/mathematics110393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air transportation is the most appropriate option for extremely vast distances, such as those between cities, provinces, and countries. While unpredictability, high volatility, and seasonality sometimes result in complex behavior in air passenger time series, this research applies the Singular Spectrum Analysis technique for air passengers data and uses the linear recurrent type for forecasting. Trends, seasonality, cyclists, and noise can all be found and extracted using Singular Spectrum Analysis. Singular Spectrum Analysis has the potential to be a highly effective forecasting method.
利用奇异谱分析预测航空旅客
对于城市、省份和国家之间的极远距离,航空运输是最合适的选择。虽然不可预测性、高波动性和季节性有时会导致航空旅客时间序列的复杂行为,但本研究将奇异谱分析技术应用于航空旅客数据,并使用线性循环类型进行预测。趋势、季节性、骑自行车者和噪音都可以使用奇异谱分析发现和提取。奇异谱分析有潜力成为一种非常有效的预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信