ROS-FM: Fast Monitoring for the Robotic Operating System(ROS)

Sean Rivera, Antonio Ken Iannillo, S. Lagraa, C. Joly, R. State
{"title":"ROS-FM: Fast Monitoring for the Robotic Operating System(ROS)","authors":"Sean Rivera, Antonio Ken Iannillo, S. Lagraa, C. Joly, R. State","doi":"10.1109/ICECCS51672.2020.00029","DOIUrl":null,"url":null,"abstract":"In this paper, we leverage the newly integrated extended Berkely Packet Filters (eBPF) and eXpress Data Path (XDP) to build ROS-FM, a high-performance inline network-monitoring framework for ROS. We extend the framework with a security policy enforcement tool and distributed data visualization tool for ROS1 and ROS2 systems. We compare the overhead of this framework against the generic ROS monitoring tools, and we test the policy enforcement against existing ROS penetration testing tools to evaluate their effectiveness. We find that the network monitoring framework and the associated visualization tools outperform the existing ROS monitoring tools for all robots with more than 10 running processes and that the monitoring tool uses only 4% of the overhead of the generic tools for robots with 80 processes. We further demonstrate the effectiveness of the security tool against common attacks in both ROS1 and ROS2.","PeriodicalId":283764,"journal":{"name":"2020 25th International Conference on Engineering of Complex Computer Systems (ICECCS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Engineering of Complex Computer Systems (ICECCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCS51672.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we leverage the newly integrated extended Berkely Packet Filters (eBPF) and eXpress Data Path (XDP) to build ROS-FM, a high-performance inline network-monitoring framework for ROS. We extend the framework with a security policy enforcement tool and distributed data visualization tool for ROS1 and ROS2 systems. We compare the overhead of this framework against the generic ROS monitoring tools, and we test the policy enforcement against existing ROS penetration testing tools to evaluate their effectiveness. We find that the network monitoring framework and the associated visualization tools outperform the existing ROS monitoring tools for all robots with more than 10 running processes and that the monitoring tool uses only 4% of the overhead of the generic tools for robots with 80 processes. We further demonstrate the effectiveness of the security tool against common attacks in both ROS1 and ROS2.
ROS- fm:机器人操作系统的快速监控
在本文中,我们利用新集成的扩展伯克利包过滤器(eBPF)和eXpress数据路径(XDP)来构建ROS- fm,一个高性能的ROS内联网络监控框架。我们使用安全策略实施工具和用于ROS1和ROS2系统的分布式数据可视化工具扩展了该框架。我们将此框架的开销与通用ROS监视工具进行比较,并针对现有ROS渗透测试工具测试策略执行,以评估其有效性。我们发现,对于所有运行进程超过10个的机器人,网络监控框架和相关的可视化工具的性能优于现有的ROS监控工具,并且对于具有80个进程的机器人,该监控工具的开销仅为通用工具的4%。我们进一步展示了安全工具在ROS1和ROS2中针对常见攻击的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信