Math Matters in Communication: Manipulation and Misrepresentation in Data Displays

K. Hardesty, C. Hardesty
{"title":"Math Matters in Communication: Manipulation and Misrepresentation in Data Displays","authors":"K. Hardesty, C. Hardesty","doi":"10.1109/ProComm48883.2020.00016","DOIUrl":null,"url":null,"abstract":"Whether you walk in industry or academia (or both), the ability to interrogate data and the way it is displayed visually matters. We discuss how misleading graphics and data displays are constructed, focusing on five means of manipulating data: 1) scale, 2) sample size, 3) confounding variables, 4) data outliers, and 5) the visual selected for the story. We focus on these areas as some of the most common sources of concern in misleading or inaccurate data displays, yet the mathematics underlying these concepts is often absent from or covered only superficially in professional communication instruction. We further offer examples to both mathematics and communication instructors for helping students recognize misleading graphics and how to avoid them, encouraging interdisciplinary bridges to meet the multidisciplinary requirements of creating ethical data displays.","PeriodicalId":311057,"journal":{"name":"2020 IEEE International Professional Communication Conference (ProComm)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Professional Communication Conference (ProComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ProComm48883.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Whether you walk in industry or academia (or both), the ability to interrogate data and the way it is displayed visually matters. We discuss how misleading graphics and data displays are constructed, focusing on five means of manipulating data: 1) scale, 2) sample size, 3) confounding variables, 4) data outliers, and 5) the visual selected for the story. We focus on these areas as some of the most common sources of concern in misleading or inaccurate data displays, yet the mathematics underlying these concepts is often absent from or covered only superficially in professional communication instruction. We further offer examples to both mathematics and communication instructors for helping students recognize misleading graphics and how to avoid them, encouraging interdisciplinary bridges to meet the multidisciplinary requirements of creating ethical data displays.
沟通中的数学问题:数据显示中的操纵和错误陈述
无论你是在工业界还是学术界(或两者兼而有之),查询数据的能力和可视化显示数据的方式都很重要。我们将讨论如何构建误导性的图形和数据显示,重点关注五种操作数据的方法:1)规模,2)样本量,3)混淆变量,4)数据异常值,以及5)为故事选择的视觉效果。我们将这些领域作为误导或不准确数据显示的一些最常见的关注来源,然而这些概念背后的数学通常在专业交流教学中缺失或只覆盖表面。我们进一步为数学和通信教师提供了帮助学生识别误导性图形以及如何避免它们的例子,鼓励跨学科的桥梁来满足创建道德数据显示的多学科要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信