Mark Cieliebak, S. Eidenbenz, Aris Pagourtzis, Konrad Schlude
{"title":"On the Complexity of Variations of Equal Sum Subsets","authors":"Mark Cieliebak, S. Eidenbenz, Aris Pagourtzis, Konrad Schlude","doi":"10.5555/1737763.1737764","DOIUrl":null,"url":null,"abstract":"The EQUAL SUM SUBSETS problem, where we are given a set of positive integers and we ask for two nonempty disjoint subsets such that their elements add up to the same total, is known to be NP-hard. In this paper we give (pseudo-)polynomial algorithms and/or (strong) NP-hardness proofs for several natural variations of EQUAL SUM SUBSETS. Among others we present (i) a framework for obtaining NP-hardness proofs and pseudopolynomial time algorithms for EQUAL SUM SUBSETS variations, which we apply to variants of the problem with additional selection restrictions, (ii) a proof of NP-hardness and a pseudo-polynomial time algorithm for the case where we ask for two subsets such that the ratio of their sums is some fixed rational r > 0, (iii) a pseudo-polynomial time algorithm for finding k subsets of equal sum, with k = O(1), and a proof of strong NP-hardness for the same problem with k = Ω(n), (iv) algorithms and hardness results for finding k equal sum subsets under the additional requirement that the subsets should be of equal cardinality. \n \nOur results are a step towards determining the dividing lines between polynomial time solvability, pseudo-polynomial time solvability, and strong NP-completeness of subset-sum related problems.","PeriodicalId":114503,"journal":{"name":"Nord. J. Comput.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nord. J. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1737763.1737764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
The EQUAL SUM SUBSETS problem, where we are given a set of positive integers and we ask for two nonempty disjoint subsets such that their elements add up to the same total, is known to be NP-hard. In this paper we give (pseudo-)polynomial algorithms and/or (strong) NP-hardness proofs for several natural variations of EQUAL SUM SUBSETS. Among others we present (i) a framework for obtaining NP-hardness proofs and pseudopolynomial time algorithms for EQUAL SUM SUBSETS variations, which we apply to variants of the problem with additional selection restrictions, (ii) a proof of NP-hardness and a pseudo-polynomial time algorithm for the case where we ask for two subsets such that the ratio of their sums is some fixed rational r > 0, (iii) a pseudo-polynomial time algorithm for finding k subsets of equal sum, with k = O(1), and a proof of strong NP-hardness for the same problem with k = Ω(n), (iv) algorithms and hardness results for finding k equal sum subsets under the additional requirement that the subsets should be of equal cardinality.
Our results are a step towards determining the dividing lines between polynomial time solvability, pseudo-polynomial time solvability, and strong NP-completeness of subset-sum related problems.