Leukocyte Segmentation using Saliency Map and Stepwise Region-merging

JaWon Gim, ByoungChul Ko, J. Nam
{"title":"Leukocyte Segmentation using Saliency Map and Stepwise Region-merging","authors":"JaWon Gim, ByoungChul Ko, J. Nam","doi":"10.3745/KIPSTB.2010.17B.3.239","DOIUrl":null,"url":null,"abstract":"ABSTRACT Leukocyte in blood smear image provides significant information to doctors for diagnosis of patient health status. Therefore, it is necessary step to separate leukocyte from blood smear image among various blood cells for early disease prediction. In this paper, we present a saliency map and stepwise region merging based leukocyte segmentation method. Since leukocyte region has salient color and texture, we create a saliency map using these feature map. Saliency map is used for sub-image separation. Then, clustering is performed on each sub-image using mean-shift. After mean-shift is applied, stepwise region-merging is applied to particle clusters to obtain final leukocyte nucleus. The experimental results show that our system can indeed improve segmentation performance compared to previous researches with average accuracy rate of 71%.Keywords:Saliency Map, Mean-shift, Stepwise Region-merging, Leukocyte Segmentation 1. 서 론 1) 혈액 세포 영상에서 백혈구의 비율은 환자의 건강상태를 파악하는데 중요한 정보를 제공하며, 이를 통해 백혈병과 같은 질병을 초기에 예측할 수 있다[1]. 혈액을 이용한 질병 예측을 위해 개발된 자동혈구 측정검사(Automatic Complete Bood Cell Count: ACBC) 방법은 임상검사실에서 시행하는 다빈도 혈액 검사의 하나로 각종 혈구 세포들의 수를 측정하여 질병 진단에 필요한 기본적인 정보를 제공한다. 일반","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2010.17B.3.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Leukocyte in blood smear image provides significant information to doctors for diagnosis of patient health status. Therefore, it is necessary step to separate leukocyte from blood smear image among various blood cells for early disease prediction. In this paper, we present a saliency map and stepwise region merging based leukocyte segmentation method. Since leukocyte region has salient color and texture, we create a saliency map using these feature map. Saliency map is used for sub-image separation. Then, clustering is performed on each sub-image using mean-shift. After mean-shift is applied, stepwise region-merging is applied to particle clusters to obtain final leukocyte nucleus. The experimental results show that our system can indeed improve segmentation performance compared to previous researches with average accuracy rate of 71%.Keywords:Saliency Map, Mean-shift, Stepwise Region-merging, Leukocyte Segmentation 1. 서 론 1) 혈액 세포 영상에서 백혈구의 비율은 환자의 건강상태를 파악하는데 중요한 정보를 제공하며, 이를 통해 백혈병과 같은 질병을 초기에 예측할 수 있다[1]. 혈액을 이용한 질병 예측을 위해 개발된 자동혈구 측정검사(Automatic Complete Bood Cell Count: ACBC) 방법은 임상검사실에서 시행하는 다빈도 혈액 검사의 하나로 각종 혈구 세포들의 수를 측정하여 질병 진단에 필요한 기본적인 정보를 제공한다. 일반
基于显著性图和逐步区域合并的白细胞分割
白细胞涂片图像为医生诊断患者健康状况提供了重要信息。因此,从各种血细胞中分离出血液涂片图像中的白细胞是早期预测疾病的必要步骤。本文提出了一种基于显著性图和逐步区域合并的白细胞分割方法。由于白细胞区域具有显著的颜色和纹理,我们利用这些特征图创建显著性图。显著性映射用于子图像分离。然后,使用mean-shift对每个子图像进行聚类。应用均值移位后,对粒子簇进行逐步区域合并,得到最终的细胞核。实验结果表明,与以往的研究相比,我们的系统确实可以提高分割性能,平均准确率达到71%。关键词:显著性图,Mean-shift,逐步区域合并,白细胞分割서론1)혈액세포영상에서백혈구의비율은환자의건강상태를파악하는데중요한정보를제공하며,이를통해백혈병과같은질병을초기에예측할수있다[1]。혈액을이용한질병예측을위해개발된자동혈구측정검사(自动完成血液细胞计数:ACBC)방법은임상검사실에서시행하는다빈도혈액검사의하나로각종혈구세포들의수를측정하여질병진단에필요한기본적인정보를제공한다。일반
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信