A Gesture Recognition System for Cranes Using Deep Learning with a Self-attention Mechanism

Keigo Watanabe, Maierdan Maimaitimin, Kazuki Yamamoto, I. Nagai
{"title":"A Gesture Recognition System for Cranes Using Deep Learning with a Self-attention Mechanism","authors":"Keigo Watanabe, Maierdan Maimaitimin, Kazuki Yamamoto, I. Nagai","doi":"10.23919/SICEISCS54350.2022.9754520","DOIUrl":null,"url":null,"abstract":"This research is aimed at recognizing the gesture of a lifting coordinator and automating the operation of a crane by introducing a system with deep learning. This paper first explains the outline of a gesture recognition system, and describes skeletal detection and its accuracy improvement technique. Furthermore, a gesture recognition system is constructed using a 1DCNN, and the recognition accuracy is verified to be improved by introducing a self-attention mechanism.","PeriodicalId":391189,"journal":{"name":"2022 SICE International Symposium on Control Systems (SICE ISCS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 SICE International Symposium on Control Systems (SICE ISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SICEISCS54350.2022.9754520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research is aimed at recognizing the gesture of a lifting coordinator and automating the operation of a crane by introducing a system with deep learning. This paper first explains the outline of a gesture recognition system, and describes skeletal detection and its accuracy improvement technique. Furthermore, a gesture recognition system is constructed using a 1DCNN, and the recognition accuracy is verified to be improved by introducing a self-attention mechanism.
基于深度学习和自注意机制的鹤类手势识别系统
本研究旨在通过引入深度学习系统,识别起重协调器的手势,实现起重机的自动化操作。本文首先阐述了手势识别系统的概要,并介绍了骨骼检测及其精度提高技术。在此基础上,利用1DCNN构建了手势识别系统,并通过引入自注意机制,验证了识别精度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信