A. Hanafi, H. Erdl, P. Rudy, J. Raring, Julian A. Carey
{"title":"High-brightness laser-based White light sources for automotive lighting applications (Conference Presentation)","authors":"A. Hanafi, H. Erdl, P. Rudy, J. Raring, Julian A. Carey","doi":"10.1117/12.2513381","DOIUrl":null,"url":null,"abstract":"Modern vehicle lighting systems are intended to improve safety on the road by providing the adequate visibility to the drivers under different driving conditions from within a compact housing. Using a high-power semipolar GaN-based blue laser diode (>3W) that pumps a yellow phosphor in a remote position, BMW and SLD co-developed a new high-luminance white point-like source having a peak brightness of over 1000 cd/mm², which is 10 times than that of high-power white LEDs. This results in extending the range of the visibility to the maximum regulatory photometric values (~600m) and in enhancing the contrast of different light distributions in the far-field. New lighting functions, devoted to guiding, assistance and communication, for example between self-driving vehicles and pedestrians, require variable, free patterned light distributions that are clearly perceivable by the driver and/or pedestrians. One way to achieve them is through the use of high-luminance, dynamic light sources with a higher luminous flux and a higher “automotive” lifetime. Such sources should enable a relatively high resolution in the far-field. Multiple efficient, high-power semi-polar blue laser emitters have therefore to be integrated in a thermo-optically stable package. Different patterns are generated on an optimized structured phosphor that is excited by a moving blue laser spot. This dynamic is enabled by a robust, compact, fast beam steering MEMS mirror. The pattern is projected in the far-field using a customized secondary optical system. Eye safety measures that ensure a safe usage in the vehicle and in the manufacturing sites, have to be implemented in such sources.","PeriodicalId":136614,"journal":{"name":"High-Power Diode Laser Technology XVII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Power Diode Laser Technology XVII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2513381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modern vehicle lighting systems are intended to improve safety on the road by providing the adequate visibility to the drivers under different driving conditions from within a compact housing. Using a high-power semipolar GaN-based blue laser diode (>3W) that pumps a yellow phosphor in a remote position, BMW and SLD co-developed a new high-luminance white point-like source having a peak brightness of over 1000 cd/mm², which is 10 times than that of high-power white LEDs. This results in extending the range of the visibility to the maximum regulatory photometric values (~600m) and in enhancing the contrast of different light distributions in the far-field. New lighting functions, devoted to guiding, assistance and communication, for example between self-driving vehicles and pedestrians, require variable, free patterned light distributions that are clearly perceivable by the driver and/or pedestrians. One way to achieve them is through the use of high-luminance, dynamic light sources with a higher luminous flux and a higher “automotive” lifetime. Such sources should enable a relatively high resolution in the far-field. Multiple efficient, high-power semi-polar blue laser emitters have therefore to be integrated in a thermo-optically stable package. Different patterns are generated on an optimized structured phosphor that is excited by a moving blue laser spot. This dynamic is enabled by a robust, compact, fast beam steering MEMS mirror. The pattern is projected in the far-field using a customized secondary optical system. Eye safety measures that ensure a safe usage in the vehicle and in the manufacturing sites, have to be implemented in such sources.