Application of a Combined Approach for Predicting a Peptide-Protein Binding Affinity Using Regulatory Regression Methods with Advance Reduction of Features

Oleksandr Murzenko, S. Olszewski, O. Boskin, I. Lurie, N. Savina, M. Voronenko, V. Lytvynenko
{"title":"Application of a Combined Approach for Predicting a Peptide-Protein Binding Affinity Using Regulatory Regression Methods with Advance Reduction of Features","authors":"Oleksandr Murzenko, S. Olszewski, O. Boskin, I. Lurie, N. Savina, M. Voronenko, V. Lytvynenko","doi":"10.1109/IDAACS.2019.8924244","DOIUrl":null,"url":null,"abstract":"The paper proposes a phased method of applying filtering algorithms, descriptor clustering. At the first stage, the features are reduced by sequential application of the moving average and FFT filtering algorithms and the reduction of the discretization step. At the second stage, for the selection of signs using the cluster analysis method X-means. At the final stage, regression models are constructed using the regulatory regression algorithms L1, L2, and Leastsquares. The resulting models are highly accurate, robust and adequate. In general, the work proposed a new method for predicting the binding affinity of peptides in order to find the numerical values of peptide bonds.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper proposes a phased method of applying filtering algorithms, descriptor clustering. At the first stage, the features are reduced by sequential application of the moving average and FFT filtering algorithms and the reduction of the discretization step. At the second stage, for the selection of signs using the cluster analysis method X-means. At the final stage, regression models are constructed using the regulatory regression algorithms L1, L2, and Leastsquares. The resulting models are highly accurate, robust and adequate. In general, the work proposed a new method for predicting the binding affinity of peptides in order to find the numerical values of peptide bonds.
使用预先特征还原的调节回归方法预测肽-蛋白结合亲和力的组合方法的应用
本文提出了一种分阶段应用滤波算法的方法——描述子聚类。在第一阶段,通过连续应用移动平均和FFT滤波算法以及减少离散化步骤来减少特征。在第二阶段,使用聚类分析方法x均值进行符号的选择。在最后阶段,使用调节回归算法L1、L2和最小二乘构建回归模型。所得到的模型精度高、鲁棒性好、完备性好。总的来说,这项工作提出了一种新的方法来预测肽的结合亲和力,以找到肽键的数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信