The Feasibility of Noise Insulating Materials With Variability of Frequencies and Amplitudes

Zach Kitowski, Andrew Marsh, R. Graves
{"title":"The Feasibility of Noise Insulating Materials With Variability of Frequencies and Amplitudes","authors":"Zach Kitowski, Andrew Marsh, R. Graves","doi":"10.1115/imece2019-11024","DOIUrl":null,"url":null,"abstract":"\n The objective of this experimental investigation was to determine the effectiveness of different thermal insulating materials noise reduction properties when exposed to acoustic signals of varying frequencies and amplitudes. The experimental system incorporated two boxes separated by a thermal insulation wall. A speaker was used in one box with varied sound amplitude and frequency to test how effective the insulating material was at reducing sound transmission through a wall. The sound level was measured with a microphone in each box and the values were used to calculate the Sound Transmission Loss (STL) for each trial. Fiberglass insulation and cork insulation were the two insulation materials tested. The frequency levels of500 Hz, 1000 Hz, and 2000 Hz were tested. A three factor ANOVA analysis was completed and the null hypothesis was rejected with 95% confidence for each of the three factors. A Tukey test was conducted to determine which factor, if any, had a significant impact on the STL value. The Tukey test determined that frequency had the most significant impact on the STL value followed by the material choice with the average difference of means for comparison groups being 17.92 dB and 7.74 dB, respectively. The Tukey test also determined sound level did not have a significant impact on the STL value. The fiberglass insulation tested had the highest STL value of the two materials tested, with a maximum STL of 49.5 dB at 2000 Hz while the minimum STL was 26.2 dB at 500 Hz. The cork insulation had a maximum STL of 44.4 dB at 2000 Hz and a minimum STL of 10.5 dB of 500 Hz. At 1000 Hz however, the cork insulation had a higher STL than the fiberglass insulation with 32.6 dB and 31.6 dB respectively. This discrepancy might be due to a specific property of the cork dictating how it interacted within a specific frequency range. The test had an overall uncertainty of ±1.34 STL which was much smaller than the difference between sample groups. The ANOVA analysis also showed a strong interaction between the insulating material and the frequency as it had a much greater F-value of 869.56 as compared with the F-critical value of 2.42.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this experimental investigation was to determine the effectiveness of different thermal insulating materials noise reduction properties when exposed to acoustic signals of varying frequencies and amplitudes. The experimental system incorporated two boxes separated by a thermal insulation wall. A speaker was used in one box with varied sound amplitude and frequency to test how effective the insulating material was at reducing sound transmission through a wall. The sound level was measured with a microphone in each box and the values were used to calculate the Sound Transmission Loss (STL) for each trial. Fiberglass insulation and cork insulation were the two insulation materials tested. The frequency levels of500 Hz, 1000 Hz, and 2000 Hz were tested. A three factor ANOVA analysis was completed and the null hypothesis was rejected with 95% confidence for each of the three factors. A Tukey test was conducted to determine which factor, if any, had a significant impact on the STL value. The Tukey test determined that frequency had the most significant impact on the STL value followed by the material choice with the average difference of means for comparison groups being 17.92 dB and 7.74 dB, respectively. The Tukey test also determined sound level did not have a significant impact on the STL value. The fiberglass insulation tested had the highest STL value of the two materials tested, with a maximum STL of 49.5 dB at 2000 Hz while the minimum STL was 26.2 dB at 500 Hz. The cork insulation had a maximum STL of 44.4 dB at 2000 Hz and a minimum STL of 10.5 dB of 500 Hz. At 1000 Hz however, the cork insulation had a higher STL than the fiberglass insulation with 32.6 dB and 31.6 dB respectively. This discrepancy might be due to a specific property of the cork dictating how it interacted within a specific frequency range. The test had an overall uncertainty of ±1.34 STL which was much smaller than the difference between sample groups. The ANOVA analysis also showed a strong interaction between the insulating material and the frequency as it had a much greater F-value of 869.56 as compared with the F-critical value of 2.42.
具有频率和振幅变异性的噪声绝缘材料的可行性
本实验研究的目的是确定当暴露于不同频率和振幅的声信号时,不同隔热材料的降噪性能的有效性。实验系统包括两个由隔热墙隔开的盒子。在一个不同声音振幅和频率的盒子里放了一个扬声器,以测试绝缘材料在减少声音通过墙壁传播方面的效果。在每个盒子中使用麦克风测量声级,并将其值用于计算每次试验的声传输损失(STL)。玻璃纤维绝缘和软木绝缘是测试的两种绝缘材料。测试了500hz、1000hz和2000hz的频率水平。完成了三因素方差分析,并以95%的置信度拒绝了原假设。进行了Tukey检验,以确定哪个因素(如果有的话)对STL值有显著影响。Tukey检验发现,频率对STL值的影响最为显著,其次是材料选择,两组平均差值分别为17.92 dB和7.74 dB。Tukey测试也确定声级对STL值没有显著影响。在测试的两种材料中,玻璃纤维绝缘的STL值最高,在2000 Hz时最大STL为49.5 dB,在500 Hz时最小STL为26.2 dB。软木绝缘在2000 Hz时的最大STL为44.4 dB,在500 Hz时的最小STL为10.5 dB。然而,在1000 Hz时,软木绝缘的STL高于玻璃纤维绝缘,分别为32.6 dB和31.6 dB。这种差异可能是由于软木塞的特定特性决定了它如何在特定频率范围内相互作用。该试验的总体不确定度为±1.34 STL,远小于样本组之间的差异。方差分析还表明,绝缘材料与频率之间存在很强的相互作用,因为它的f值为869.56,远高于f临界值2.42。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信