PH-SSBM: Phrase Semantic Similarity Based Model for Document Clustering

Walaa K. Gad, M. Kamel
{"title":"PH-SSBM: Phrase Semantic Similarity Based Model for Document Clustering","authors":"Walaa K. Gad, M. Kamel","doi":"10.1109/KAM.2009.191","DOIUrl":null,"url":null,"abstract":"In this paper, a novel document representation model the Phrases Semantic Similarity Based Model (PHSSBM), is proposed. This model combines phrases analysis as well as words analysis with the use of WordNet as background knowledge to explore better ways of documents representation for clustering. The PH-SSBM assigns semantic weights to both document words and phrases. The new weights reflect the semantic relatedness between documents terms and capture the semantic information in the documents. The PH-SSBM finds similarity between documents based on matching terms (phrases and words) and their semantic weights. Experimental results show that the phrases semantic similarity based model (PH-SSBM) in conjunction with WordNet has a promising performance improvement for text clustering.","PeriodicalId":192986,"journal":{"name":"2009 Second International Symposium on Knowledge Acquisition and Modeling","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2009.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a novel document representation model the Phrases Semantic Similarity Based Model (PHSSBM), is proposed. This model combines phrases analysis as well as words analysis with the use of WordNet as background knowledge to explore better ways of documents representation for clustering. The PH-SSBM assigns semantic weights to both document words and phrases. The new weights reflect the semantic relatedness between documents terms and capture the semantic information in the documents. The PH-SSBM finds similarity between documents based on matching terms (phrases and words) and their semantic weights. Experimental results show that the phrases semantic similarity based model (PH-SSBM) in conjunction with WordNet has a promising performance improvement for text clustering.
基于短语语义相似度的文档聚类模型
本文提出了一种新的文档表示模型——基于短语语义相似度的模型。该模型将短语分析和单词分析结合起来,使用WordNet作为背景知识,探索更好的聚类文档表示方法。PH-SSBM为文档单词和短语分配语义权重。新的权重反映了文档术语之间的语义相关性,并捕获了文档中的语义信息。PH-SSBM根据匹配的术语(短语和单词)及其语义权重来查找文档之间的相似性。实验结果表明,基于短语语义相似度的模型(PH-SSBM)与WordNet相结合,对文本聚类具有很好的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信