On some Hardy-type inequalities for generalized fractional integrals

M. Samraiz, Shafqat Shahzadi, S. Iqbal, Z. Tomovski
{"title":"On some Hardy-type inequalities for generalized fractional integrals","authors":"M. Samraiz, Shafqat Shahzadi, S. Iqbal, Z. Tomovski","doi":"10.7153/fdc-2019-09-03","DOIUrl":null,"url":null,"abstract":". In this article we establish the variant of Hardy-type and re fi ned Hardy-type inequal- ities for a generalized Riemann-Liouville fractional integral operator and Riemann-Liouville k -fractional integral operator using convex and monotone convex functions. We also discuss one dimensional cases of our related results. As special cases of our general results we obtain the consequences of Iqbal et al. [11]. We also obtained exponentially convex linear functionals for the generalized fractional integral operators. Moreover, it includes Cauchy means for the above mentioned operators. The fi rst de fi nition is presented in","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2019-09-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. In this article we establish the variant of Hardy-type and re fi ned Hardy-type inequal- ities for a generalized Riemann-Liouville fractional integral operator and Riemann-Liouville k -fractional integral operator using convex and monotone convex functions. We also discuss one dimensional cases of our related results. As special cases of our general results we obtain the consequences of Iqbal et al. [11]. We also obtained exponentially convex linear functionals for the generalized fractional integral operators. Moreover, it includes Cauchy means for the above mentioned operators. The fi rst de fi nition is presented in
广义分数阶积分的hardy型不等式
. 本文利用凸函数和单调凸函数建立了广义Riemann-Liouville分数阶积分算子和Riemann-Liouville k分数阶积分算子的hardy -型变分不等式,并重新定义了hardy -型不等式。我们还讨论了相关结果的一维情况。作为一般结果的特例,我们得到了Iqbal等人[11]的结果。我们还得到了广义分数阶积分算子的指数凸线性泛函。此外,它还包含了上述算子的柯西均值。第一个定义在
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信