Video stabilization for an aerial surveillance system using sift and surf

Jagdeep Kaur, A. Bathla
{"title":"Video stabilization for an aerial surveillance system using sift and surf","authors":"Jagdeep Kaur, A. Bathla","doi":"10.1109/NGCT.2016.7877509","DOIUrl":null,"url":null,"abstract":"Nowadays, an aerial closed-circuit television provides an outsize quantity of information compared with ancient closed-circuit television. But, it suffers from unsought cameras motion that presents new challenges. This paper presents a work on video stabilization and detection of the objects which are in moving position, system supported camera motion estimation. Most effective algorithms SIFT (Scale Invariant Feature Transform) and SURF (Speeded Up Robust Features) used for feature extraction. When estimating the worldwide parameters of camera motion victimization transformation, we have a tendency to find moving object by Kalman filtering. SURF (Speeded up Robust Features) is additionally a property extraction algorithmic rule works nearly like SIFT algorithmic rule, however quicker than SIFT.","PeriodicalId":326018,"journal":{"name":"2016 2nd International Conference on Next Generation Computing Technologies (NGCT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Next Generation Computing Technologies (NGCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NGCT.2016.7877509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nowadays, an aerial closed-circuit television provides an outsize quantity of information compared with ancient closed-circuit television. But, it suffers from unsought cameras motion that presents new challenges. This paper presents a work on video stabilization and detection of the objects which are in moving position, system supported camera motion estimation. Most effective algorithms SIFT (Scale Invariant Feature Transform) and SURF (Speeded Up Robust Features) used for feature extraction. When estimating the worldwide parameters of camera motion victimization transformation, we have a tendency to find moving object by Kalman filtering. SURF (Speeded up Robust Features) is additionally a property extraction algorithmic rule works nearly like SIFT algorithmic rule, however quicker than SIFT.
基于sift和surf的空中监控系统视频稳定
如今,与古代的闭路电视相比,空中闭路电视提供了大量的信息。但是,它的缺点是摄像头的移动带来了新的挑战。本文介绍了视频稳像、运动目标检测、系统支持的摄像机运动估计等方面的工作。最有效的特征提取算法是SIFT (Scale Invariant Feature Transform)和SURF (accelerated Robust Features)。在估计摄像机运动受害变换的全局参数时,存在用卡尔曼滤波寻找运动目标的倾向。SURF(加速鲁棒特征)是另一种属性提取算法规则,其工作原理与SIFT算法规则相似,但比SIFT更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信