Accelerating parallel graph computing with speculation

Shuo Ji, Yinliang Zhao, Qing Yi
{"title":"Accelerating parallel graph computing with speculation","authors":"Shuo Ji, Yinliang Zhao, Qing Yi","doi":"10.1145/3310273.3323049","DOIUrl":null,"url":null,"abstract":"Nowadays distributed graph computing is widely used to process large amount of data on the internet. Communication overhead is a critical factor in determining the overall efficiency of graph algorithms. Through speculative prediction of the content of communications, we develop an optimization technique to significantly reduce the amount of communications needed for a class of graph algorithms. We have evaluated our optimization technique using five graph algorithms, Single-source shortest path, Connected Components, PageRank, Diameter, and Random Walk, on the Amazon EC2 clusters using different graph datasets. Our optimized implementations have reduced communication overhead by 21--93% for these algorithms, while keeping the error rates under 5%.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3323049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays distributed graph computing is widely used to process large amount of data on the internet. Communication overhead is a critical factor in determining the overall efficiency of graph algorithms. Through speculative prediction of the content of communications, we develop an optimization technique to significantly reduce the amount of communications needed for a class of graph algorithms. We have evaluated our optimization technique using five graph algorithms, Single-source shortest path, Connected Components, PageRank, Diameter, and Random Walk, on the Amazon EC2 clusters using different graph datasets. Our optimized implementations have reduced communication overhead by 21--93% for these algorithms, while keeping the error rates under 5%.
利用推测加速并行图计算
目前,分布式图计算被广泛用于处理互联网上的大量数据。通信开销是决定图算法整体效率的关键因素。通过对通信内容的推测性预测,我们开发了一种优化技术,以显着减少一类图算法所需的通信量。我们在Amazon EC2集群上使用不同的图数据集,使用五种图算法(单源最短路径、连接组件、PageRank、Diameter和Random Walk)评估了我们的优化技术。我们的优化实现将这些算法的通信开销减少了21- 93%,同时将错误率保持在5%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信