Differential Cultural Algorithm for Digital Filters Design

Hongyuan Gao, M. Diao
{"title":"Differential Cultural Algorithm for Digital Filters Design","authors":"Hongyuan Gao, M. Diao","doi":"10.1109/ICCMS.2010.466","DOIUrl":null,"url":null,"abstract":"FIR and IIR digital filters design involve multi-parameter optimization, on which some existing intelligent algorithms don’t work efficiently. This paper focuses on employing the proposed differential cultural (DC) algorithm to design FIR and IIR digital filters. DC is a global stochastic searching technique that can find out the global optima of the problem more rapidly. After describing the theory and method of DC, we present how to use it in FIR and IIR digital filters design. It has been proved by simulation experiments that DC outperforms the particle swarm optimization (PSO), quantum particle swarm optimization (QPSO) and adaptive quantum particle swarm optimization (AQPSO) for the problem of filter design.","PeriodicalId":153175,"journal":{"name":"2010 Second International Conference on Computer Modeling and Simulation","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMS.2010.466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

FIR and IIR digital filters design involve multi-parameter optimization, on which some existing intelligent algorithms don’t work efficiently. This paper focuses on employing the proposed differential cultural (DC) algorithm to design FIR and IIR digital filters. DC is a global stochastic searching technique that can find out the global optima of the problem more rapidly. After describing the theory and method of DC, we present how to use it in FIR and IIR digital filters design. It has been proved by simulation experiments that DC outperforms the particle swarm optimization (PSO), quantum particle swarm optimization (QPSO) and adaptive quantum particle swarm optimization (AQPSO) for the problem of filter design.
数字滤波器设计中的差分文化算法
FIR和IIR数字滤波器的设计涉及多参数优化问题,现有的一些智能算法在此问题上不能有效地工作。本文的重点是采用差分文化(DC)算法设计FIR和IIR数字滤波器。DC是一种全局随机搜索技术,可以更快地找到问题的全局最优解。在介绍直流原理和方法的基础上,介绍了直流在FIR和IIR数字滤波器设计中的应用。仿真实验证明,在滤波器设计问题上,DC算法优于粒子群算法(PSO)、量子粒子群算法(QPSO)和自适应量子粒子群算法(AQPSO)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信