Enstrophy bounds and the range of space-time scales in the hydrostatic primitive equations

J. Gibbon, Darryl D. Holm
{"title":"Enstrophy bounds and the range of space-time scales in the hydrostatic primitive equations","authors":"J. Gibbon, Darryl D. Holm","doi":"10.1103/PHYSREVE.87.031001","DOIUrl":null,"url":null,"abstract":"The hydrostatic primitive equations (HPE) form the basis of most numerical weather, climate and global ocean circulation models. Analytical (not statistical) methods are used to find a scaling proportional to $(Nu\\,Ra\\,Re)^{1/4}$ for the range of horizontal spatial sizes in HPE solutions, which is much broader than currently achievable computationally. The range of scales for the HPE is determined from an analytical bound on the time-averaged enstrophy of the horizontal circulation. This bound allows the formation of very small spatial scales, whose existence would excite unphysically large linear oscillation frequencies and gravity wave speeds.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVE.87.031001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The hydrostatic primitive equations (HPE) form the basis of most numerical weather, climate and global ocean circulation models. Analytical (not statistical) methods are used to find a scaling proportional to $(Nu\,Ra\,Re)^{1/4}$ for the range of horizontal spatial sizes in HPE solutions, which is much broader than currently achievable computationally. The range of scales for the HPE is determined from an analytical bound on the time-averaged enstrophy of the horizontal circulation. This bound allows the formation of very small spatial scales, whose existence would excite unphysically large linear oscillation frequencies and gravity wave speeds.
流体静力原始方程中的熵界和时空尺度范围
流体静力原始方程(HPE)构成了大多数数值天气、气候和全球海洋环流模式的基础。分析(非统计)方法用于找到HPE解决方案中水平空间尺寸范围与$(Nu\,Ra\,Re)^{1/4}$成比例的缩放,这比目前可实现的计算范围要宽得多。HPE的尺度范围由水平环流的时间平均熵的解析界确定。这个边界允许形成非常小的空间尺度,其存在将激发非物理的大线性振荡频率和重力波速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信