Topic Detection from Microblog Based on Text Clustering and Topic Model Analysis

Siqi Huang, Yitao Yang, Huakang Li, Guozi Sun
{"title":"Topic Detection from Microblog Based on Text Clustering and Topic Model Analysis","authors":"Siqi Huang, Yitao Yang, Huakang Li, Guozi Sun","doi":"10.1109/APSCC.2014.18","DOIUrl":null,"url":null,"abstract":"This paper raises a Microblog topic detection method based on text clustering and topic model analysis. It solves the problem that the traditional topic detection method is mainly applicable for traditional media text, which is not very effective in handling sparse Micro blog short texts. In consequence of the structural data of the Microblog, which exists rich inter-textual contextual information such as retweets, comments, user hash tag, embedded link URL, we first put forward a feature weight pre-processing method. We also use a clustering algorithm based on word vectors to enrich the feature information of the data. On this basis, we extend the conventional LDA (Latent Dirichlet allocation) topic model to extract the hot topics in the Micro blog data. Compared with the traditional methods, the method raised in this paper is much more effective in the collected text corpus in Sina Microblog.","PeriodicalId":393593,"journal":{"name":"2014 Asia-Pacific Services Computing Conference","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Asia-Pacific Services Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSCC.2014.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper raises a Microblog topic detection method based on text clustering and topic model analysis. It solves the problem that the traditional topic detection method is mainly applicable for traditional media text, which is not very effective in handling sparse Micro blog short texts. In consequence of the structural data of the Microblog, which exists rich inter-textual contextual information such as retweets, comments, user hash tag, embedded link URL, we first put forward a feature weight pre-processing method. We also use a clustering algorithm based on word vectors to enrich the feature information of the data. On this basis, we extend the conventional LDA (Latent Dirichlet allocation) topic model to extract the hot topics in the Micro blog data. Compared with the traditional methods, the method raised in this paper is much more effective in the collected text corpus in Sina Microblog.
基于文本聚类和主题模型分析的微博主题检测
提出了一种基于文本聚类和话题模型分析的微博话题检测方法。解决了传统的主题检测方法主要适用于传统媒体文本,在处理稀疏的微博短文本时不是很有效的问题。针对微博结构数据中存在转发、评论、用户哈希标签、嵌入链接URL等丰富的文本间上下文信息,首先提出了一种特征权重预处理方法。我们还使用了基于词向量的聚类算法来丰富数据的特征信息。在此基础上,对传统的LDA (Latent Dirichlet allocation)话题模型进行扩展,提取微博数据中的热点话题。与传统方法相比,本文提出的方法在新浪微博的文本语料库中更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信