A closed-loop procedure for the modeling and tuning of Kalman Filter for FOG INS

Alessandro Benini, R. Senatore, F. D'Angelo, D. Orsini, E. Quatraro, M. Verola, A. Pizzarulli
{"title":"A closed-loop procedure for the modeling and tuning of Kalman Filter for FOG INS","authors":"Alessandro Benini, R. Senatore, F. D'Angelo, D. Orsini, E. Quatraro, M. Verola, A. Pizzarulli","doi":"10.1109/INERTIALSENSORS.2015.7314263","DOIUrl":null,"url":null,"abstract":"This paper describes an iterative closed-loop procedure for the performance optimization of an Inertial Navigation System (INS) based on Fiber Optic Gyro (FOG) technology for airborne applications. The proposed approach focuses on the tuning of the Indirect Kalman Filter (IKF) covariance matrices using inertial sensor errors budgets gathered by the analysis of Allan Variance in a reliable calibration environment. The proposed method identifies a base metrics for predicting the actual filter performance, selecting a suitable combinations of IKF tuning parameters in order to satisfy the system specifications for a particular application. The engineering optimization process spans from the sensor raw data acquisition up to the performance test on the real target HW platform, carrying out the various intermediate steps of algorithm design, simulation runs, code porting and deployment on the embedded INS, lab and on-field testing for performance verification and final comparison of the acquired data output with simulation results to feed the successive tuning iteration. The matching effectiveness between simulated and real data is presented to highlight the beneficial features of this approach.","PeriodicalId":437174,"journal":{"name":"2015 DGON Inertial Sensors and Systems Symposium (ISS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 DGON Inertial Sensors and Systems Symposium (ISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIALSENSORS.2015.7314263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes an iterative closed-loop procedure for the performance optimization of an Inertial Navigation System (INS) based on Fiber Optic Gyro (FOG) technology for airborne applications. The proposed approach focuses on the tuning of the Indirect Kalman Filter (IKF) covariance matrices using inertial sensor errors budgets gathered by the analysis of Allan Variance in a reliable calibration environment. The proposed method identifies a base metrics for predicting the actual filter performance, selecting a suitable combinations of IKF tuning parameters in order to satisfy the system specifications for a particular application. The engineering optimization process spans from the sensor raw data acquisition up to the performance test on the real target HW platform, carrying out the various intermediate steps of algorithm design, simulation runs, code porting and deployment on the embedded INS, lab and on-field testing for performance verification and final comparison of the acquired data output with simulation results to feed the successive tuning iteration. The matching effectiveness between simulated and real data is presented to highlight the beneficial features of this approach.
一种用于光纤陀螺惯导系统的卡尔曼滤波器的闭环建模和整定方法
本文介绍了一种基于光纤陀螺技术的机载惯性导航系统性能优化的迭代闭环方法。该方法的重点是在可靠的校准环境中,利用惯性传感器误差预算(通过Allan方差分析收集)来调整间接卡尔曼滤波器(IKF)协方差矩阵。提出的方法确定了预测实际滤波器性能的基本指标,选择合适的IKF调优参数组合,以满足特定应用的系统规范。工程优化过程从传感器原始数据采集到在真实目标硬件平台上进行性能测试,在嵌入式INS上进行算法设计、仿真运行、代码移植和部署、实验室和现场测试以进行性能验证,并最终将采集的数据输出与仿真结果进行比较,为后续的调优迭代提供依据。通过仿真数据与实际数据的匹配效果,突出了该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信