A case study of OpenCL-based parallel programming for low-power remote sensing applications

A. C. Angulo, R. Carrasco-Alvarez, Jaime Ortegón-Aguilar, J. V. Castillo, O. Marrufo, A. Atoche
{"title":"A case study of OpenCL-based parallel programming for low-power remote sensing applications","authors":"A. C. Angulo, R. Carrasco-Alvarez, Jaime Ortegón-Aguilar, J. V. Castillo, O. Marrufo, A. Atoche","doi":"10.1109/ICEEE.2015.7357959","DOIUrl":null,"url":null,"abstract":"With the advent of high-performance embedded computing (HPEC) systems, many digital processing algorithms are now implemented by special-purpose massively parallel processors. In this paper, a low-power ARM/GPU co-design architecture is addressed using OpenCL-based parallel programming for implementing complex reconstructive signal processing operations. Such operations are accelerated using data-parallel functions on the GPU and ARM processor, in a HW/SW co-design scheme via OpenCL API calls. Experimental results shows the achieved computational performance and the effectiveness of the OpenCL standard comparing the framework against traditional parallel embedded versions.","PeriodicalId":285783,"journal":{"name":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2015.7357959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the advent of high-performance embedded computing (HPEC) systems, many digital processing algorithms are now implemented by special-purpose massively parallel processors. In this paper, a low-power ARM/GPU co-design architecture is addressed using OpenCL-based parallel programming for implementing complex reconstructive signal processing operations. Such operations are accelerated using data-parallel functions on the GPU and ARM processor, in a HW/SW co-design scheme via OpenCL API calls. Experimental results shows the achieved computational performance and the effectiveness of the OpenCL standard comparing the framework against traditional parallel embedded versions.
基于opencl的低功耗遥感应用并行编程案例研究
随着高性能嵌入式计算(HPEC)系统的出现,许多数字处理算法现在都是由专用的大规模并行处理器实现的。本文采用基于opencl的并行编程实现了一种低功耗ARM/GPU协同设计架构,以实现复杂的重构信号处理操作。这些操作使用GPU和ARM处理器上的数据并行功能加速,在硬件/软件协同设计方案中通过OpenCL API调用。实验结果表明,与传统的并行嵌入式版本相比,该框架具有较高的计算性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信