Potential Component Leaks in Android Apps: An Investigation into a New Feature Set for Malware Detection

Li Li, Kevin Allix, Daoyuan Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein
{"title":"Potential Component Leaks in Android Apps: An Investigation into a New Feature Set for Malware Detection","authors":"Li Li, Kevin Allix, Daoyuan Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein","doi":"10.1109/QRS.2015.36","DOIUrl":null,"url":null,"abstract":"We discuss the capability of a new feature set for malware detection based on potential component leaks (PCLs). PCLs are defined as sensitive data-flows that involve Android inter-component communications. We show that PCLs are common in Android apps and that malicious applications indeed manipulate significantly more PCLs than benign apps. Then, we evaluate a machine learning-based approach relying on PCLs. Experimental validations show high performance for identifying malware, demonstrating that PCLs can be used for discriminating malicious apps from benign apps.","PeriodicalId":361839,"journal":{"name":"2015 IEEE International Conference on Software Quality, Reliability and Security","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Software Quality, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2015.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We discuss the capability of a new feature set for malware detection based on potential component leaks (PCLs). PCLs are defined as sensitive data-flows that involve Android inter-component communications. We show that PCLs are common in Android apps and that malicious applications indeed manipulate significantly more PCLs than benign apps. Then, we evaluate a machine learning-based approach relying on PCLs. Experimental validations show high performance for identifying malware, demonstrating that PCLs can be used for discriminating malicious apps from benign apps.
Android应用程序中潜在的组件泄漏:对恶意软件检测新功能集的调查
我们讨论了基于潜在组件泄漏(pcl)的恶意软件检测的新功能集的功能。pcl被定义为涉及Android组件间通信的敏感数据流。我们表明,pcl在Android应用程序中很常见,恶意应用程序确实比良性应用程序操纵更多的pcl。然后,我们评估了一种基于pcl的机器学习方法。实验验证显示了识别恶意软件的高性能,表明pcl可以用于区分恶意应用程序和良性应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信