Optimal Design of Single Machine Power System Stabilizer using Chemical Reaction Optimization Technique

S. Paul, P. Roy
{"title":"Optimal Design of Single Machine Power System Stabilizer using Chemical Reaction Optimization Technique","authors":"S. Paul, P. Roy","doi":"10.4018/IJEOE.2015040104","DOIUrl":null,"url":null,"abstract":"PSSs are added to excitation systems to enhance the damping during low frequency oscillations. The non-linear model of a machine is linearized at different operating points. Chemical Reaction optimization (CRO), a new population based search algorithm is been proposed in this paper to damp the power system low-frequency oscillations and enhance power system stability. Computation results demonstrate that the proposed algorithm is effective in damping low frequency oscillations as well as improving system dynamic stability. The performance of the proposed algorithm is evaluated for different loading conditions. In addition, the proposed algorithm is more effective and provides superior performance when compared other population based optimization algorithms like differential evolution (DE) and particle swarm optimization (PSO).","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"64 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2015040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

PSSs are added to excitation systems to enhance the damping during low frequency oscillations. The non-linear model of a machine is linearized at different operating points. Chemical Reaction optimization (CRO), a new population based search algorithm is been proposed in this paper to damp the power system low-frequency oscillations and enhance power system stability. Computation results demonstrate that the proposed algorithm is effective in damping low frequency oscillations as well as improving system dynamic stability. The performance of the proposed algorithm is evaluated for different loading conditions. In addition, the proposed algorithm is more effective and provides superior performance when compared other population based optimization algorithms like differential evolution (DE) and particle swarm optimization (PSO).
基于化学反应优化技术的单机电力系统稳定器优化设计
在励磁系统中加入pss以增强低频振荡时的阻尼。机器的非线性模型在不同的工作点被线性化。为了抑制电力系统的低频振荡,提高电力系统的稳定性,提出了一种新的基于种群的搜索算法——化学反应优化算法(CRO)。计算结果表明,该算法能有效地抑制低频振荡,提高系统的动态稳定性。在不同的加载条件下,对该算法的性能进行了评价。此外,与差分进化(DE)和粒子群优化(PSO)等基于种群的优化算法相比,该算法具有更高的效率和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信