Let me Decrypt your Beauty: Real-time Prediction of Video Resolution and Bitrate for Encrypted Video Streaming

Sarah Wassermann, Michael Seufert, P. Casas, Li Gang, Kuang Li
{"title":"Let me Decrypt your Beauty: Real-time Prediction of Video Resolution and Bitrate for Encrypted Video Streaming","authors":"Sarah Wassermann, Michael Seufert, P. Casas, Li Gang, Kuang Li","doi":"10.23919/TMA.2019.8784589","DOIUrl":null,"url":null,"abstract":"The dynamic adaptation of the video quality induced by HTTP Adaptive Streaming (HAS) technology introduces new Quality of Experience (QoE) metrics beyond re-buffering. In this work we address the problem of real-time QoE monitoring of HAS, focusing on the continuous prediction of video resolution and average video bitrate, for the particular case of YouTube. Through empirical evaluations over a large video dataset, we demonstrate that it is possible to accurately predict the specific video resolution, as well as the average video bitrate, both in real time, and using a time granularity as small as one new prediction every second, not achieved by other proposals in the literature.","PeriodicalId":241672,"journal":{"name":"2019 Network Traffic Measurement and Analysis Conference (TMA)","volume":"30 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2019.8784589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The dynamic adaptation of the video quality induced by HTTP Adaptive Streaming (HAS) technology introduces new Quality of Experience (QoE) metrics beyond re-buffering. In this work we address the problem of real-time QoE monitoring of HAS, focusing on the continuous prediction of video resolution and average video bitrate, for the particular case of YouTube. Through empirical evaluations over a large video dataset, we demonstrate that it is possible to accurately predict the specific video resolution, as well as the average video bitrate, both in real time, and using a time granularity as small as one new prediction every second, not achieved by other proposals in the literature.
让我解密你的美:实时预测视频分辨率和比特率的加密视频流
由HTTP自适应流(HAS)技术引起的视频质量的动态适应引入了新的体验质量(QoE)指标,而不是重新缓冲。在这项工作中,我们解决了实时QoE监控HAS的问题,重点关注视频分辨率和平均视频比特率的连续预测,针对YouTube的特殊情况。通过对大型视频数据集的经验评估,我们证明可以实时准确地预测特定的视频分辨率,以及平均视频比特率,并且使用小到每秒一个新的预测的时间粒度,这是文献中其他建议无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信