A neuro-fuzzy-GA system architecture for helping the knowledge acquisition process

L. Brasil, F. de Azevedo, J. Barreto, M. Noirhomme-Fraiture
{"title":"A neuro-fuzzy-GA system architecture for helping the knowledge acquisition process","authors":"L. Brasil, F. de Azevedo, J. Barreto, M. Noirhomme-Fraiture","doi":"10.1109/IJSIS.1998.685417","DOIUrl":null,"url":null,"abstract":"The knowledge acquisition process consists on extracting knowledge of a domain expert. This work aims to minimize the intrinsic difficulties of the knowledge acquisition process. For achieve this purpose, all possible rules from the domain expert and a set of example were obtained for a short time interval. The proposed hybrid expert system minimizes the knowledge acquisition difficulties using a new methodology. To build this hybrid architecture, several tools were used: symbolic paradigm, connectionist paradigm, fuzzy logic and genetic algorithm.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"17 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The knowledge acquisition process consists on extracting knowledge of a domain expert. This work aims to minimize the intrinsic difficulties of the knowledge acquisition process. For achieve this purpose, all possible rules from the domain expert and a set of example were obtained for a short time interval. The proposed hybrid expert system minimizes the knowledge acquisition difficulties using a new methodology. To build this hybrid architecture, several tools were used: symbolic paradigm, connectionist paradigm, fuzzy logic and genetic algorithm.
一种有助于知识获取的神经模糊遗传算法系统架构
知识获取过程主要是抽取领域专家的知识。这项工作的目的是尽量减少知识获取过程的内在困难。为了实现这一目的,在短时间间隔内获得领域专家提供的所有可能规则和一组示例。所提出的混合专家系统采用了一种新的方法,最大限度地减少了知识获取的困难。为了构建这种混合架构,使用了几种工具:符号范式、连接主义范式、模糊逻辑和遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信