A descent family of the spectral Hestenes–Stiefel method by considering the quasi-Newton method

Maryam Khoshsimaye-Bargard, A. Ashrafi
{"title":"A descent family of the spectral Hestenes–Stiefel method by considering the quasi-Newton method","authors":"Maryam Khoshsimaye-Bargard, A. Ashrafi","doi":"10.1080/10556788.2022.2142585","DOIUrl":null,"url":null,"abstract":"The prominent computational features of the Hestenes–Stiefel parameter as one of the fundamental members of conjugate gradient methods have attracted the attention of many researchers. Yet, as a weak stop, it lacks global convergence for general functions. To overcome this defect, a family of spectral version of Hestenes–Stiefel conjugate gradient methods is introduced. To compute the spectral parameter, in the account of worthy properties of quasi-Newton methods, we minimize the distance between the search direction matrix of the spectral conjugate gradient method and the BFGS (Broyden–Fletcher–Goldfarb–Shanno) update. To achieve sufficient descent property, the search direction is projected in the orthogonal subspace to the gradient of the objective function. The convergence analysis of the proposed method is carried out under standard assumptions for general functions. Finally, the practical merits of the suggested method are investigated by numerical experiments on a set of CUTEr test functions using the Dolan–Moré performance profile. The results show the computational efficiency of the proposed method.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2142585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The prominent computational features of the Hestenes–Stiefel parameter as one of the fundamental members of conjugate gradient methods have attracted the attention of many researchers. Yet, as a weak stop, it lacks global convergence for general functions. To overcome this defect, a family of spectral version of Hestenes–Stiefel conjugate gradient methods is introduced. To compute the spectral parameter, in the account of worthy properties of quasi-Newton methods, we minimize the distance between the search direction matrix of the spectral conjugate gradient method and the BFGS (Broyden–Fletcher–Goldfarb–Shanno) update. To achieve sufficient descent property, the search direction is projected in the orthogonal subspace to the gradient of the objective function. The convergence analysis of the proposed method is carried out under standard assumptions for general functions. Finally, the practical merits of the suggested method are investigated by numerical experiments on a set of CUTEr test functions using the Dolan–Moré performance profile. The results show the computational efficiency of the proposed method.
考虑拟牛顿方法的谱Hestenes-Stiefel方法的下降族
Hestenes-Stiefel参数作为共轭梯度法的基本成员之一,其突出的计算特性引起了许多研究者的关注。然而,作为一个弱停站,它缺乏对一般函数的全局收敛性。为了克服这一缺陷,引入了一种谱版Hestenes-Stiefel共轭梯度方法。为了计算谱参数,考虑到准牛顿方法的优点,最小化谱共轭梯度法的搜索方向矩阵与BFGS (Broyden-Fletcher-Goldfarb-Shanno)更新之间的距离。为了获得充分的下降特性,将搜索方向在正交子空间中投影到目标函数的梯度上。在一般函数的标准假设下,对所提方法进行了收敛性分析。最后,利用dolan - mor性能曲线对一组CUTEr测试函数进行了数值实验,研究了该方法的实际优点。实验结果表明了该方法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信