{"title":"NN's and GA's: evolving co-operative behaviour in adaptive learning agents","authors":"Mukesh J. Patel, V. Maniezzo","doi":"10.1109/ICEC.1994.349937","DOIUrl":null,"url":null,"abstract":"Without a comprehensive training set, it is difficult to train neural networks (NN) to solve a complex learning task. Usually, the more complex the problem or task the NNs have to learn, the less likely it is that there is a realistic training set that could be used for (supervised) training. One way to overcome this limitation is to implement an evolutionary approach to train NNs. We report the results of a novel implementation of an evolutionary computational technique, based on a modified genetic algorithm (GA), to evolve feedforward NN topologies and weight distributions. The learning task was for two fairly simple but autonomous agents (controlled by NNs) to learn to co-operate in order to accomplish a task. Given the complexity of the task, an evolutionary approach to a search for an appropriate NN topology and weight distribution seems to be a promising and viable approach, as our results show. The implications of the results are further discussed.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"13 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.349937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Without a comprehensive training set, it is difficult to train neural networks (NN) to solve a complex learning task. Usually, the more complex the problem or task the NNs have to learn, the less likely it is that there is a realistic training set that could be used for (supervised) training. One way to overcome this limitation is to implement an evolutionary approach to train NNs. We report the results of a novel implementation of an evolutionary computational technique, based on a modified genetic algorithm (GA), to evolve feedforward NN topologies and weight distributions. The learning task was for two fairly simple but autonomous agents (controlled by NNs) to learn to co-operate in order to accomplish a task. Given the complexity of the task, an evolutionary approach to a search for an appropriate NN topology and weight distribution seems to be a promising and viable approach, as our results show. The implications of the results are further discussed.<>