William Damario Lukito, Farras Eldy Rashad, Effrina Yanti Hamid
{"title":"Multi Features-based Baseband Modulation Classification using Support Vector Machine","authors":"William Damario Lukito, Farras Eldy Rashad, Effrina Yanti Hamid","doi":"10.1109/ICRAMET53537.2021.9650496","DOIUrl":null,"url":null,"abstract":"This research discusses the implementation of machine learning for modulation classification purpose. In order to proof the concept, 6 types of modulation have been selected, i.e., BPSK, QPSK, 8-PSK, 16-QAM, BFSK, and 8-PAM. Machine learning algorithm that was used in this research is support vector machine (SVM) and implemented using MATLAB’s classification learner. Data sets were generated using an ADALM-PLUTO SDR, and processed at baseband frequency range. Regarding the input predictors to the SVM algorithm, this research proposes multi classification features, such as wavelet transform-based, spectral-based, and higher-order statistical-based features. SVM algorithm obtained a classification-rule model with 91.4% of accuracy without any optimization applied.","PeriodicalId":269759,"journal":{"name":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET53537.2021.9650496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This research discusses the implementation of machine learning for modulation classification purpose. In order to proof the concept, 6 types of modulation have been selected, i.e., BPSK, QPSK, 8-PSK, 16-QAM, BFSK, and 8-PAM. Machine learning algorithm that was used in this research is support vector machine (SVM) and implemented using MATLAB’s classification learner. Data sets were generated using an ADALM-PLUTO SDR, and processed at baseband frequency range. Regarding the input predictors to the SVM algorithm, this research proposes multi classification features, such as wavelet transform-based, spectral-based, and higher-order statistical-based features. SVM algorithm obtained a classification-rule model with 91.4% of accuracy without any optimization applied.