{"title":"Supervised Learning of a Color-Based Active Basis Model for Object Recognition","authors":"T. T. Q. Bui, K. Hong","doi":"10.1109/KSE.2010.20","DOIUrl":null,"url":null,"abstract":"Wu and coworkers introduced an active basis model (ABM) for detecting generic objects in static images. A grey-value local power spectrum was utilized to find a common template and deformable templates from a set of training images and to detect an object in unknown images by template matching. In this paper, we propose a color-based active basis model (color-based ABM for short) which includes color information. We adapt the framework of Wu et al. into the learning, detection, and classification of the color-based ABM. However, in order to improve the performance in object recognition, we modify the framework of Wu et al. by using different color-based features in both supervised learning and template matching algorithms. In addition, significant improvements are reported with regard to the proposed color-based ABM for object recognition.","PeriodicalId":158823,"journal":{"name":"2010 Second International Conference on Knowledge and Systems Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Wu and coworkers introduced an active basis model (ABM) for detecting generic objects in static images. A grey-value local power spectrum was utilized to find a common template and deformable templates from a set of training images and to detect an object in unknown images by template matching. In this paper, we propose a color-based active basis model (color-based ABM for short) which includes color information. We adapt the framework of Wu et al. into the learning, detection, and classification of the color-based ABM. However, in order to improve the performance in object recognition, we modify the framework of Wu et al. by using different color-based features in both supervised learning and template matching algorithms. In addition, significant improvements are reported with regard to the proposed color-based ABM for object recognition.