Automata Processing in Reconfigurable Architectures

Chunkun Bo, V. Dang, Ted Xie, J. Wadden, M. Stan, K. Skadron
{"title":"Automata Processing in Reconfigurable Architectures","authors":"Chunkun Bo, V. Dang, Ted Xie, J. Wadden, M. Stan, K. Skadron","doi":"10.1145/3314576","DOIUrl":null,"url":null,"abstract":"We present a general automata processing framework on FPGAs, which generates an RTL kernel for automata processing together with an AXI and PCIe based I/O circuitry. We implement the framework on both local nodes and cloud platforms (Amazon AWS and Nimbix) with novel features. A full performance comparison of the proposed framework is conducted against state-of-the-art automata processing engines on CPUs, GPUs, and Micron’s Automata Processor using the ANMLZoo benchmark suite and some real-world datasets. Results show that FPGAs enable extremely high-throughput automata processing compared to von Neumann architectures. We also collect the resource utilization and power consumption on the two cloud platforms, and find that the I/O circuitry consumes most of the hardware resources and power. Furthermore, we propose a fast, symbol-only reconfiguration mechanism based on the framework for large pattern sets that cannot fit on a single device and need to be partitioned. The proposed method supports multiple passes of the input stream and reduces the re-compilation cost from hours to seconds.","PeriodicalId":162787,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a general automata processing framework on FPGAs, which generates an RTL kernel for automata processing together with an AXI and PCIe based I/O circuitry. We implement the framework on both local nodes and cloud platforms (Amazon AWS and Nimbix) with novel features. A full performance comparison of the proposed framework is conducted against state-of-the-art automata processing engines on CPUs, GPUs, and Micron’s Automata Processor using the ANMLZoo benchmark suite and some real-world datasets. Results show that FPGAs enable extremely high-throughput automata processing compared to von Neumann architectures. We also collect the resource utilization and power consumption on the two cloud platforms, and find that the I/O circuitry consumes most of the hardware resources and power. Furthermore, we propose a fast, symbol-only reconfiguration mechanism based on the framework for large pattern sets that cannot fit on a single device and need to be partitioned. The proposed method supports multiple passes of the input stream and reduces the re-compilation cost from hours to seconds.
可重构结构中的自动机处理
我们在fpga上提出了一个通用的自动机处理框架,该框架生成了一个RTL内核,用于自动机处理以及基于AXI和PCIe的I/O电路。我们在本地节点和云平台(Amazon AWS和Nimbix)上实现了具有新颖功能的框架。使用ANMLZoo基准测试套件和一些真实世界的数据集,对所建议的框架与cpu、gpu和Micron的自动机处理器上最先进的自动机处理引擎进行了全面的性能比较。结果表明,与冯·诺伊曼架构相比,fpga能够实现极高的吞吐量自动机处理。我们还收集了两个云平台上的资源利用率和功耗,发现I/O电路消耗了大部分的硬件资源和功耗。此外,我们提出了一种基于框架的快速、仅符号重构机制,用于无法在单个设备上容纳且需要分区的大型模式集。该方法支持输入流的多次传递,并将重新编译的时间从数小时减少到数秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信