{"title":"Coded Energy-Efficient Beam-Alignment for Millimeter-Wave Networks","authors":"Muddassar Hussain, Nicolò Michelusi","doi":"10.1109/ALLERTON.2018.8635944","DOIUrl":null,"url":null,"abstract":"Millimeter-wave communications rely on narrow-beam transmissions to cope with the strong signal attenuation at these frequencies, thus demanding precise alignment between transmitter and receiver. However, the beam-alignment procedure may entail a huge overhead and its performance may be degraded by detection errors. This paper proposes a coded energy-efficient beam-alignment scheme, robust against detection errors. Specifically, the beam-alignment sequence is designed such that the error-free feedback sequences are generated from a codebook with the desired error correction capabilities. Therefore, in the presence of detection errors, the error-free feedback sequences can be recovered with high probability. The assignment of beams to codewords is designed to optimize energy efficiency, and a water-filling solution is proved. The numerical results with analog beams depict up to 4dB and 8dB gains over exhaustive and uncoded beam-alignment schemes, respectively.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Millimeter-wave communications rely on narrow-beam transmissions to cope with the strong signal attenuation at these frequencies, thus demanding precise alignment between transmitter and receiver. However, the beam-alignment procedure may entail a huge overhead and its performance may be degraded by detection errors. This paper proposes a coded energy-efficient beam-alignment scheme, robust against detection errors. Specifically, the beam-alignment sequence is designed such that the error-free feedback sequences are generated from a codebook with the desired error correction capabilities. Therefore, in the presence of detection errors, the error-free feedback sequences can be recovered with high probability. The assignment of beams to codewords is designed to optimize energy efficiency, and a water-filling solution is proved. The numerical results with analog beams depict up to 4dB and 8dB gains over exhaustive and uncoded beam-alignment schemes, respectively.