On Classifying Images using Quantum Image Representation

Ankit Khandelwal, M. Chandra, Sayantani Pramanik
{"title":"On Classifying Images using Quantum Image Representation","authors":"Ankit Khandelwal, M. Chandra, Sayantani Pramanik","doi":"10.1109/SEC54971.2022.00067","DOIUrl":null,"url":null,"abstract":"Quantum Image Representation is researched from last few years, and more active in the recent past. Set to examine how these representations would be useful for Image Processing in a quantum way, we considered the Quantum Machine Learning problem of image classification in this paper. Encouraging results have been provided on classifying benchmark datasets of grayscale and colour images using two different classifiers and their combination. Multiclass classification performance has also been tested.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Quantum Image Representation is researched from last few years, and more active in the recent past. Set to examine how these representations would be useful for Image Processing in a quantum way, we considered the Quantum Machine Learning problem of image classification in this paper. Encouraging results have been provided on classifying benchmark datasets of grayscale and colour images using two different classifiers and their combination. Multiclass classification performance has also been tested.
基于量子图像表示的图像分类研究
量子图像表示是近几年才开始研究的,近年来更加活跃。为了研究这些表征如何以量子方式对图像处理有用,我们在本文中考虑了图像分类的量子机器学习问题。使用两种不同的分类器及其组合对灰度和彩色图像的基准数据集进行分类,取得了令人鼓舞的结果。对多类分类性能也进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信