{"title":"RFID tag acquisition via compressed sensing","authors":"M. Mayer, Norbert Görtz, J. Kaitovic","doi":"10.1109/RFID-TA.2014.6934195","DOIUrl":null,"url":null,"abstract":"We focus on simultaneously identifying a small subset of radio frequency identification tags out of a large known total set. This, for instance, applies to the popular use-case of a supermarket checkout where the items in a shopping cart need quick and reliable identification. Since the number of items in the cart is usually very small compared to the total amount of inventoried items in a store, it appears natural to formulate the identification problem according to compressed sensing, exploiting the inherent sparsity of the problem and allowing collisions in tag responses rather than avoiding them. This yields a very efficient way of identifying tags with only a small number of measurements. We introduce a novel tag identification scheme that utilizes the computationally cheap Approximate Message Passing (AMP) algorithm. A simulation-based heuristic is introduced to minimize the number of required measurements for AMP recovery. Furthermore, a method of implementation is sketched, and the performance of the proposed scheme is investigated and compared to the well known frame slotted aloha protocol. A large gain in identification throughput is achieved.","PeriodicalId":143130,"journal":{"name":"2014 IEEE RFID Technology and Applications Conference (RFID-TA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE RFID Technology and Applications Conference (RFID-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID-TA.2014.6934195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We focus on simultaneously identifying a small subset of radio frequency identification tags out of a large known total set. This, for instance, applies to the popular use-case of a supermarket checkout where the items in a shopping cart need quick and reliable identification. Since the number of items in the cart is usually very small compared to the total amount of inventoried items in a store, it appears natural to formulate the identification problem according to compressed sensing, exploiting the inherent sparsity of the problem and allowing collisions in tag responses rather than avoiding them. This yields a very efficient way of identifying tags with only a small number of measurements. We introduce a novel tag identification scheme that utilizes the computationally cheap Approximate Message Passing (AMP) algorithm. A simulation-based heuristic is introduced to minimize the number of required measurements for AMP recovery. Furthermore, a method of implementation is sketched, and the performance of the proposed scheme is investigated and compared to the well known frame slotted aloha protocol. A large gain in identification throughput is achieved.