Acoustic Optimization Approach for Annular Diffusers in Turbomachinery Applications Using Plane Wave Modelling

Felix Fischer, J. Seume
{"title":"Acoustic Optimization Approach for Annular Diffusers in Turbomachinery Applications Using Plane Wave Modelling","authors":"Felix Fischer, J. Seume","doi":"10.1115/gt2022-80517","DOIUrl":null,"url":null,"abstract":"\n The experimental investigation of unsteady aerodynamic effects in turbomachinery test rigs requires the establishment of anechoic boundary conditions in order to acquire data unaffected by acoustic reflections outside the test section. In this manner, controlled measurement environments can be achieved that allow for the acquisition of high-quality aeroacoustic and -elastic measurement data in turbomachinery test rigs. In the case of the initial design of the Aeroacoustic Wind Tunnel (AWT) at the Institute of Turbomachinery and Fluid Dynamics, acoustic reflections were observed in the diffuser section of the test rig, which interfered with the sound transmission measurements of low-pressure turbine airfoils.\n The present paper describes a one-dimensional semi-analytical modelling and optimization approach of sound propagation in the AWTs diffuser section for plane waves based on Webster’s horn equation. With this approach, a new hub diffuser was designed for defined geometric and aerodynamic boundary conditions, which compared to the original geometry, reduce acoustic reflections due to continuous impedance matching. The design of a new supporting strut configuration further reduces reflections due to scattering from installations in the flow path. Validation of the modelling and solution approaches are carried out based on a comparison with experimental data of the initial (reference) design, as well as numerical simulations of both designs. According to analytical and numerical models the optimized design reduces acoustic reflections by up to 21.2 dB compared to the initial design.","PeriodicalId":191970,"journal":{"name":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-80517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The experimental investigation of unsteady aerodynamic effects in turbomachinery test rigs requires the establishment of anechoic boundary conditions in order to acquire data unaffected by acoustic reflections outside the test section. In this manner, controlled measurement environments can be achieved that allow for the acquisition of high-quality aeroacoustic and -elastic measurement data in turbomachinery test rigs. In the case of the initial design of the Aeroacoustic Wind Tunnel (AWT) at the Institute of Turbomachinery and Fluid Dynamics, acoustic reflections were observed in the diffuser section of the test rig, which interfered with the sound transmission measurements of low-pressure turbine airfoils. The present paper describes a one-dimensional semi-analytical modelling and optimization approach of sound propagation in the AWTs diffuser section for plane waves based on Webster’s horn equation. With this approach, a new hub diffuser was designed for defined geometric and aerodynamic boundary conditions, which compared to the original geometry, reduce acoustic reflections due to continuous impedance matching. The design of a new supporting strut configuration further reduces reflections due to scattering from installations in the flow path. Validation of the modelling and solution approaches are carried out based on a comparison with experimental data of the initial (reference) design, as well as numerical simulations of both designs. According to analytical and numerical models the optimized design reduces acoustic reflections by up to 21.2 dB compared to the initial design.
基于平面波模型的涡轮机械环形扩散器声学优化方法
涡轮机械试验台非定常气动效应的实验研究需要建立无回声边界条件,以获得不受试验台外声反射影响的数据。通过这种方式,可以实现受控的测量环境,从而可以在涡轮机械试验台中获取高质量的气动声学和弹性测量数据。在英国涡轮机械与流体动力学研究所的气动声学风洞(AWT)的初始设计中,在试验台的扩散器部分观察到声学反射,这干扰了低压涡轮翼型的声透射测量。本文提出了一种基于韦伯斯特喇叭方程的平面波awt扩散段声传播的一维半解析建模和优化方法。利用这种方法,设计了一种新的轮毂扩压器,用于定义几何和气动边界条件,与原始几何结构相比,由于连续的阻抗匹配,减少了声反射。新型支撑杆结构的设计进一步减少了流道中装置散射产生的反射。通过与初始(参考)设计的实验数据以及两种设计的数值模拟的比较,对建模和求解方法进行了验证。根据分析和数值模型,优化后的设计比初始设计减少了21.2 dB的声反射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信