Improving Efficiency of K-Means Algorithm for Large Datasets

C. Swapna, V. Kumar, J. Murthy
{"title":"Improving Efficiency of K-Means Algorithm for Large Datasets","authors":"C. Swapna, V. Kumar, J. Murthy","doi":"10.4018/IJRSDA.2016040101","DOIUrl":null,"url":null,"abstract":"Clustering is a process of grouping objects into different classes based on their similarities. K-means is a widely studied partitional based algorithm. It is reported to work efficiently for small datasets; however the performance is not very appreciable in terms of time of computation for large datasets. Several modifications have been made by researchers to address this issue. This paper proposes a novel way of handling the large datasets using K-means in a distributed manner to obtain efficiency. The concept of parallel processing is exploited by dividing the datasets to a number of baskets and then applying K-means in parallel manner to each such basket. The proposed BasketK-means provides a very competitive performance with considerably less computation time. The simulation results on various real datasets and synthetic datasets presented in the work clearly emphasize the effectiveness of the proposed approach.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2016040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Clustering is a process of grouping objects into different classes based on their similarities. K-means is a widely studied partitional based algorithm. It is reported to work efficiently for small datasets; however the performance is not very appreciable in terms of time of computation for large datasets. Several modifications have been made by researchers to address this issue. This paper proposes a novel way of handling the large datasets using K-means in a distributed manner to obtain efficiency. The concept of parallel processing is exploited by dividing the datasets to a number of baskets and then applying K-means in parallel manner to each such basket. The proposed BasketK-means provides a very competitive performance with considerably less computation time. The simulation results on various real datasets and synthetic datasets presented in the work clearly emphasize the effectiveness of the proposed approach.
提高大数据集K-Means算法的效率
聚类是根据对象的相似度将其分成不同类的过程。K-means是一种被广泛研究的基于分区的算法。据报道,它对小数据集有效;然而,就大型数据集的计算时间而言,性能不是很可观。为了解决这个问题,研究人员做了一些修改。本文提出了一种利用k均值分布式处理大型数据集的新方法,以提高效率。并行处理的概念是通过将数据集划分为多个篮子,然后以并行的方式对每个篮子应用K-means来利用的。提出的basket -means以相当少的计算时间提供了非常有竞争力的性能。在各种真实数据集和合成数据集上的仿真结果清楚地强调了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信