Fast Simulation Method with Reinforcement Learning for Automated Optimization of Electronic Systems

{"title":"Fast Simulation Method with Reinforcement Learning for Automated Optimization of Electronic Systems","authors":"","doi":"10.1109/TENSYMP55890.2023.10223650","DOIUrl":null,"url":null,"abstract":"Design automation of electronic systems is challenging due to the growing design space, high performance tradeoffs, and rapid technological advances. To solve this problem, this paper presents an automated optimization framework that combines Fast Simulation with deep reinforcement learning for automatic circuit design. Fast Simulation can quickly and accurately evaluate circuit performance by neural networks. Deep reinforcement learning is used to find optimal parameters in the design space. Compared with existing reinforcement learning methods, the proposed method can automatically generate labels for the optimization results of the reinforcement learning agent by the simulator to retrain the neural network. To this end, the proposed optimization method performs better designs and reduces the required number of simulations.","PeriodicalId":314726,"journal":{"name":"2023 IEEE Region 10 Symposium (TENSYMP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP55890.2023.10223650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Design automation of electronic systems is challenging due to the growing design space, high performance tradeoffs, and rapid technological advances. To solve this problem, this paper presents an automated optimization framework that combines Fast Simulation with deep reinforcement learning for automatic circuit design. Fast Simulation can quickly and accurately evaluate circuit performance by neural networks. Deep reinforcement learning is used to find optimal parameters in the design space. Compared with existing reinforcement learning methods, the proposed method can automatically generate labels for the optimization results of the reinforcement learning agent by the simulator to retrain the neural network. To this end, the proposed optimization method performs better designs and reduces the required number of simulations.
基于强化学习的电子系统自动优化快速仿真方法
由于不断增长的设计空间、高性能权衡和快速的技术进步,电子系统的设计自动化具有挑战性。为了解决这一问题,本文提出了一种结合快速仿真和深度强化学习的自动优化框架,用于自动电路设计。快速仿真可以快速准确地评估神经网络的电路性能。深度强化学习用于在设计空间中寻找最优参数。与现有的强化学习方法相比,该方法可以通过模拟器对强化学习代理的优化结果自动生成标签,对神经网络进行再训练。为此,提出的优化方法具有更好的设计效果,减少了所需的仿真次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信