Selective Background Adaptation Based Abnormal Acoustic Event Recognition for Audio Surveillance

Woohyun Choi, Jinsang Rho, D. Han, Hanseok Ko
{"title":"Selective Background Adaptation Based Abnormal Acoustic Event Recognition for Audio Surveillance","authors":"Woohyun Choi, Jinsang Rho, D. Han, Hanseok Ko","doi":"10.1109/AVSS.2012.65","DOIUrl":null,"url":null,"abstract":"In this paper, a method for abnormal acoustic event recognition in an audio surveillance system is presented. We propose a recognition scheme based on a hierarchical structure using a feature combination of Mel-Frequency Cepstral Coefficient (MFCC), timbre, and spectral statistics. A selective background adaptation is proposed for robust abnormal acoustic event recognition in real-world situations. For training, we use a database containing 9 abnormal events (scream, glass breaking, and etc.) and 6 background noise types collected under various surveillance situations. Gaussian Mixture Model (GMM) is considered for classifying the representative abnormal acoustic events and for selecting the background noise for adaptation. Effectiveness of the proposed method is demonstrated via representative experimental results.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper, a method for abnormal acoustic event recognition in an audio surveillance system is presented. We propose a recognition scheme based on a hierarchical structure using a feature combination of Mel-Frequency Cepstral Coefficient (MFCC), timbre, and spectral statistics. A selective background adaptation is proposed for robust abnormal acoustic event recognition in real-world situations. For training, we use a database containing 9 abnormal events (scream, glass breaking, and etc.) and 6 background noise types collected under various surveillance situations. Gaussian Mixture Model (GMM) is considered for classifying the representative abnormal acoustic events and for selecting the background noise for adaptation. Effectiveness of the proposed method is demonstrated via representative experimental results.
基于选择性背景自适应的音频监控异常声事件识别
提出了一种音频监控系统中异常声事件的识别方法。我们提出了一种基于分层结构的识别方案,使用Mel-Frequency Cepstral Coefficient (MFCC)、音色和频谱统计的特征组合。提出了一种基于背景的鲁棒性异常声事件识别方法。在训练中,我们使用了一个数据库,其中包含9个异常事件(尖叫,玻璃破碎等)和6种背景噪音类型,这些噪音是在各种监视情况下收集的。采用高斯混合模型(Gaussian Mixture Model, GMM)对具有代表性的异常声事件进行分类,并选择背景噪声进行自适应。通过具有代表性的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信