Xieyuanli Chen, Hui Zhang, Huimin Lu, Junhao Xiao, Qihang Qiu, Yi Li
{"title":"Robust SLAM system based on monocular vision and LiDAR for robotic urban search and rescue","authors":"Xieyuanli Chen, Hui Zhang, Huimin Lu, Junhao Xiao, Qihang Qiu, Yi Li","doi":"10.1109/SSRR.2017.8088138","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a monocular SLAM system for robotic urban search and rescue (USAR), based on which most USAR tasks (e.g. localization, mapping, exploration and object recognition) can be fulfilled by rescue robots with only a single camera. The proposed system can be a promising basis to implement fully autonomous rescue robots. However, the feature-based map built by the monocular SLAM is difficult for the operator to understand and use. We therefore combine the monocular SLAM with a 2D LIDAR SLAM to realize a 2D mapping and 6D localization SLAM system which can not only obtain a real scale of the environment and make the map more friendly to users, but also solve the problem that the robot pose cannot be tracked by the 2D LIDAR SLAM when the robot climbing stairs and ramps. We test our system using a real rescue robot in simulated disaster environments. The experimental results show that good performance can be achieved using the proposed system in the USAR. The system has also been successfully applied and tested in the RoboCup Rescue Robot League (RRL) competitions, where our rescue robot team entered the top 5 and won the Best in Class small robot mobility in 2016 RoboCup RRL Leipzig Germany, and the champions of 2016 and 2017 RoboCup China Open RRL competitions.","PeriodicalId":403881,"journal":{"name":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2017.8088138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
In this paper, we propose a monocular SLAM system for robotic urban search and rescue (USAR), based on which most USAR tasks (e.g. localization, mapping, exploration and object recognition) can be fulfilled by rescue robots with only a single camera. The proposed system can be a promising basis to implement fully autonomous rescue robots. However, the feature-based map built by the monocular SLAM is difficult for the operator to understand and use. We therefore combine the monocular SLAM with a 2D LIDAR SLAM to realize a 2D mapping and 6D localization SLAM system which can not only obtain a real scale of the environment and make the map more friendly to users, but also solve the problem that the robot pose cannot be tracked by the 2D LIDAR SLAM when the robot climbing stairs and ramps. We test our system using a real rescue robot in simulated disaster environments. The experimental results show that good performance can be achieved using the proposed system in the USAR. The system has also been successfully applied and tested in the RoboCup Rescue Robot League (RRL) competitions, where our rescue robot team entered the top 5 and won the Best in Class small robot mobility in 2016 RoboCup RRL Leipzig Germany, and the champions of 2016 and 2017 RoboCup China Open RRL competitions.